Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Áp dụng BĐT Cô - si ngược dấu :
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4\left(x-2010\right)}\le\frac{4+\left(x-2010\right)}{4}\)
\(\Rightarrow\sqrt{x-2010}-1\le\frac{4+\left(x-2010\right)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}\le\frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2010=4\\x-2011=4\\z-2012=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\\z=2016\end{cases}}}\)
Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)
\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)
\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)
mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)
<=> x+y = 0 hoặc x+z=0 hoặc z+y=0
<=> x = -y hoặc x = -z hoặc z = -y
\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)
\(S=\frac{2010^2}{2010x}+\frac{1}{2010y}-\frac{2010}{1005}\ge\frac{2011^2}{2010\left(x+y\right)}-\frac{2010}{1005}\)
\(\frac{2011^2}{2010.\frac{2011}{2012}}-\frac{2010}{1005}=\frac{2021056}{1005}\)