\(\frac{12x^2+20x+3}{6x^2+43x+7}\)và  Q =\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

\(Q=\frac{12x^2+20x+3}{6x^2+43x+7}=\frac{12x^2+18x+2x+3}{6x^2+42x+x+7}=\frac{6x\left(2x+3\right)+\left(2x+3\right)}{6x\left(x+7\right)+\left(x+7\right)}=\frac{\left(6x+1\right)\left(2x+3\right)}{\left(6x+1\right)\left(x+7\right)}=\frac{2x+3}{x+7}\)\(P=\frac{8x^2+36x+36}{x^2+10x+21}=\frac{4\left(2x^2+9x+9\right)}{x^2+3x+7x+21}=\frac{4\left(2x^2+3x+6x+9\right)}{x\left(x+3\right)+7\left(x+3\right)}=\frac{4\left[x\left(2x+3\right)+3\left(2x+3\right)\right]}{\left(x+3\right)\left(x+7\right)}=\frac{4\left(x+3\right)\left(2x+3\right)}{\left(x+3\right)\left(x+7\right)}=\frac{4\left(2x+3\right)}{x+7}\)

=> \(Q:P=\frac{2x+3}{x+7}:\frac{4\left(2x+3\right)}{x+7}=\frac{2x+3}{x+7}.\frac{x+7}{4\left(2x+3\right)}=\frac{1}{4}\)

=>\(Q=\frac{1}{4}P\)

24 tháng 1 2017

\(\frac{Q\left(0\right)}{P\left(0\right)}=\frac{3.21}{7.36}=\frac{1}{4}\Rightarrow Q=\frac{1}{4}P\)

22 tháng 11 2015

\(Q=\frac{\left(6x+1\right)\left(2x+3\right)}{\left(6x+1\right)\left(x+7\right)}=\frac{2x+3}{x+7}\)

\(P=\frac{4\left(2x+3\right)\left(x+3\right)}{\left(x+7\right)\left(x+3\right)}=\frac{4\left(2x+3\right)}{x+7}=4Q\)

\(\frac{P}{Q}=4\)

24 tháng 1 2017

P không xác định khi x2+10x+21=x2+3x+7x+21=x(x+3)+7(x+3)=(x+7)(x+3)=0<=>x=-3 hoặc x=-7

24 tháng 1 2017

@Hoangphuc nhưng có thêm + 21 mà? Thử lại vẫn thấy xác định

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘