K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

\(A\cup B=(-2;2)\)

\(A\cap B=\left\{0\right\}\)

\(A\setminus B=(-2;0)\)

Về hình vẽ trên trục số thì đơn giản rồi. Bạn có thể tự vẽ.

11 tháng 10 2021

\(A\cup B=\left(-2;2\right)\)

\(A\cap B=0\)

A\B=(-2;0)

11 tháng 10 2021

\(A\cup B=\left(-2;2\right)\)

\(A\cap B=\left\{0\right\}\)

\(A\B=\left(-2;0\right)\)

16 tháng 5 2021

\(\left\{{}\begin{matrix}a=0\\b=\dfrac{-4}{-2}=2\end{matrix}\right.\)

\(I\left(0,2\right)\)

\(R=\sqrt{0^2+2^2-1}=\sqrt{3}\)

 

2 tháng 7 2019

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

*) Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Phương trình đường tròn (C) có dạng: (x-2 ) 2  + (y-b ) 2  = b 2

*) Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:

IB = 5 ⇒ Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

⇒ (2 - 6 ) 2  + (b - 4 ) 2  = 25

⇒ 16 + (b - 4 ) 2  = 25

⇒ (b - 4 ) 2  = 9

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

+) Với b = 7, phương trình đường tròn (C) là (x - 2 ) 2  + (y - 7 ) 2  = 49

+) Với b = 1, phương trình đường tròn (C) là (x - 2 ) 2  + (y + 1 ) 2  = 1

 

Vậy phương trình đường tròn (C) là (x - 2 ) 2  + (y - 7 ) 2  = 49 hoặc (x - 2 ) 2  + (y + 1 ) 2  = 1.

NV
30 tháng 12 2020

\(A=[4;+\infty)\)

\(B=\left(6;9\right)\)

\(B\backslash A=\varnothing\)

28 tháng 1 2022

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

 Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Phương trình đường tròn (C) có dạng: \(\left(x-2\right)^2+\left(y-b\right)^2=b^2\)

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

 Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:

\(IB=5\Rightarrow\sqrt{\left(2-6\right)^2+\left(b-4\right)^2}=5\)

\(\Rightarrow\left(2-6\right)^2+\left(b-4\right)^2=25\)

\(\Rightarrow16+\left(b-4\right)^2=25\)

\(\Rightarrow\left(b-4\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}b-4=3\\b-4=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=7\\b=-1\end{matrix}\right.\)

Với b = 7, phương trình đường tròn (C) là \(\left(x-2\right)^2+\left(y-7\right)^2=49\)

 Với b = 1, phương trình đường tròn (C) là  \(\left(x-2\right)^2+\left(y-2\right)^2=1\)

Vậy phương trình đường tròn (C) là \(\left(x-2\right)^2+\left(y-7\right)^2=49\) hoặc \(\left(x-2\right)^2+\left(y-2\right)^2=1\)