K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)

Vì -1/-5<>2/3

nên A,B,C ko thẳng hàng

=>A,B,C là ba đỉnh của 1 tam giác

b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)

\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)

\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)

\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)

=>sinBAC=0,54

\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)

c: ADBC là hình bình hành

=>vecto AD=vecto CB

=>x-3=2-(-2) và y+1=1-2

=>x-3=2+2 và y=-2

=>x=7 và y=-2

 

20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn

vecto AB=(-7;0)

vecto DC=(3-x;5-y)

Vì ABCD là hình bình hành

nên vecto AB=vecto DC

=>3-x=-7; 5-y=0

=>x=10; y=5

7 tháng 11 2019

Đáp án B

NV
23 tháng 12 2022

38.

Gọi I là trung điểm AB và G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)

\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)

\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)

\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)

\(\Leftrightarrow MI=MG\)

\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG

NV
23 tháng 12 2022

a.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng

\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác

b.

Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)

Gọi G là trọng tâm tam giác, theo công thức trọng tâm: 

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)

c.

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)

ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)

\(\Rightarrow D\left(5;-5\right)\)

NV
5 tháng 12 2021

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(7;-4\right)\\\overrightarrow{DC}=\left(3-x;7-y\right)\end{matrix}\right.\)

ABCD là hbh khi: \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}3-x=7\\7-y=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=11\end{matrix}\right.\)

\(\Rightarrow D\left(-4;11\right)\)