K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

B A X Y Z K H E F T I

Gọi I là giao điểm của AX và BY.

Ta có: ^XAY = ^YBX = 900 => Tứ giác ABXY nội tiếp đường tròn đường kính XY => ^BAX = ^BYX

Mà ^BYX = ^BHX nên ^BAX = ^BHX => \(\Delta\)XHB ~ \(\Delta\)XBA (g.g) => XB2 = XH.XA

Hay XZ2 = XH.XA => \(\Delta\)XHZ ~ \(\Delta\)XZA (c.g.c) => ^XZH = ^XAZ => ^XEZ = ^XAZ

=> Tứ giác AEXZ nội tiếp => ^AXE = ^AZE = 1800 - ^XZE - ^YZA = 1800 - ^XAZ - ^YAZ = 1800 - ^XAY = 900

=> ^AXE = ^XAY (=900) => XE // YA. Tương tự: XB // YF => ^BXE = ^FYA

Mà 2 tam giác BXE và FYA cân tại các đỉnh X và Y nên \(\Delta\)BXE ~ \(\Delta\)FYA (g.g)

=> \(\frac{BE}{FA}=\frac{XE}{YA}=\frac{XB}{YA}=\frac{IB}{IA}\)(Do \(\Delta\)BIX ~ \(\Delta\)AIY).

Đồng thời: BE,FA là cặp cạnh tương ứng của \(\Delta\)BXE ~ \(\Delta\)FYA . Mà XE // YA, XB // YF nên BE // FA

Áp dụng hệ quả ĐL Thales: \(\frac{BE}{FA}=\frac{TB}{TA}\). Từ đó: \(\frac{IB}{IA}=\frac{TB}{TA}\)=> IT là phân giác ^AIB (1)

Mặt khác: \(\frac{IX}{IY}=\frac{BX}{AY}=\frac{BZ}{AZ}\)=> BZ là phân giác ^XIY    (2)

Từ (1) và (2), kết hợp với ^AIB, ^XIY đối đỉnh => Z,I,T thẳng hàng => ZT đi qua I

Do đó: 3 đường thẳng XA,YB,ZT đồng quy (đpcm).

18 tháng 12 2023

a: Xét (O) có

OM là bán kính

EF\(\perp\)OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM,EA là các tiếp tuyến

Do đó: EM=EA

Xét (O) có

FM,FB là các tiếp tuyến

Do đó: FM=FB

Ta có: EF=EM+MF

mà EM=EA và FM=FB

nên EF=EA+FB

góc ACB=góc ADB=1/2*180=90 độ

=>BC vuông góc AE và BD vuông góc AF

ΔABE vuông tại B có BC là đường cao

nên AC*AE=AB^2

ΔABF vuông tại B có BDlà đường cao

nên AD*AF=AB^2

=>AC*AE=AD*AF

=>AC/AF=AD/AE

=>ΔACD đồng dạng vớiΔAFE

=>góc ACD=góc AFE

=>góc DCE+góc DFE=180 độ

=>DCEF nội tiếp

a: Xét tứ giác CAOK co

góc CAO+góc CKO=180 độ

nên CAOK là tứ giác nội tiếp

b: Xét (O) có

CK,CA là tiếp tuyến

nên CK=CA và OC là phân giác của góc AOK(1)

Xét (O) có

DK,DB là tiếp tuyến

nên DK=DB và OD là phân giác của góc KOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

OK^2=KC*KD

=>AC*BD=R^2 ko đổi

c: Xét ΔOAK có OA=OK=AK

nên ΔOAK đều

=>gócc AOK=60 độ

=>góc KOB=120 độ

=>góc KDB=60 độ

mà DK=DB

nên ΔDKB đều