\(\widehat{OAO'}>90^o\).Đườn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

M A B C I D N O H K

a) CM: \(\widehat{OBM}=\widehat{ODC}\)

 \(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)

\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )

=> \(\widehat{OBM}=\widehat{ODC}\)

b) 

+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao

=> Tam giác CMN cân tại C (1)

=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)

=> Tam giác BMA cân tại B

=> BM=BA=CD ( ABCD là hình bình hành) (2)

+) CO là phân giác \(\widehat{BCD}\)

=> \(\widebat{BO}=\widebat{DO}\)

=> BO=DO (3)

+) Xét tam giác BOM và tam giác DOC có:

\(\widehat{OBM}=\widehat{ODC}\)( theo a)

BM=CD ( theo 2)

BO=DO (theo 3)

=> \(\Delta BOM=\Delta DOC\)

+) OM=OC

Và từ (1) => CO là đường trung trực của MN

=> OM=ON

Vậy OM=ON=OC

=> O là tâm đường tròn ngoại tiếp tam giác CMN

c)  GỌi H là giao của IO và BD

=> IH vuông BD và H là trung điể m BD

Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)

\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)

\(=IK^2-ID^2+2HD.KD\)

=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)

=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)

Ta lại có: CK là phân giác trong của tam giác CBD

=> \(\frac{BK}{KD}=\frac{CB}{CD}\)

Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)

=> CB=DN

=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)

Từ (4), (5)

=> ĐPCM

3 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d

a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.

b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.

Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)

Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)

Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)

c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)

Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)

Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)

Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)

Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)

Vậy EP = EQ.

+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)

\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)

Lại có  \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))

Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)

3 tháng 5 2017

d. Ta có BD.AC = AB.CD

Lại có do ABCD là tứ giác nội tiếp nên 

AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme)  \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)

\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)

Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)

Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)

\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)

4 tháng 3 2020

A B C O D E H I F

a) Xét \(\Delta ABE\)và \(\Delta ABD\)có :

\(\widehat{BAE}=\widehat{BAD}\)\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\approx\Delta ADB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AD.AE=AB^2\)( 1 )

Xét \(\Delta ABO\)vuông tại B ( do AB là tiếp tuyến ), đường cao BH ( tự c/m ), ta có hệ thức lượng

\(AH.AO=AB^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(AD.AE=AH.AO=AB^2\)

b) \(AD.AE=AH.AO\Rightarrow\frac{AE}{AH}=\frac{AO}{AD}\)

Xét \(\Delta AEH\)và \(\Delta AOD\)có :

\(\frac{AE}{AH}=\frac{AO}{AD}\)\(\widehat{EAH}\)( chung )

\(\Rightarrow\Delta AEH\approx\Delta AOD\left(c.g.c\right)\)\(\Rightarrow\widehat{AHE}=\widehat{ADO}\)( 3 )

Mà \(\Delta ODE\)cân tại O ( do OE = OD ) \(\Rightarrow\widehat{OED}=\widehat{ODE}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra \(\widehat{AHE}=\widehat{OED}\)

c) đường thẳng qua B vuông góc với CD tại I 

Xét hai tam giác vuông BID và CBI có :

\(\widehat{IDB}=\widehat{CBI}\)\(\widehat{BID}=\widehat{BIC}=90^o\)

\(\Rightarrow\Delta BID\approx\Delta CIB\left(g.g\right)\) \(\Rightarrow\frac{ID}{IB}=\frac{IB}{IC}=\frac{DB}{BC}\)

\(\Rightarrow\frac{ID}{IB}.\frac{IB}{IC}=\frac{ID}{IC}=\frac{BD^2}{BC^2}\)

Mặt khác : \(\Delta DAC\)có : BI // AC

\(\Rightarrow\frac{FI}{AC}=\frac{DI}{DC}=\frac{DI}{DI+CI}=\frac{1}{1+\frac{CI}{DI}}=\frac{1}{1+\frac{BC^2}{BD^2}}=\frac{BD^2}{BD^2+BC^2}=\frac{BD^2}{4R^2}\)( R là bán kính )

\(\Rightarrow FI=\frac{BD^2.AC}{4R^2}\)( 5 )

Xét \(\Delta BCD\)và \(\Delta ACO\)có :

\(\widehat{BCD}=\widehat{OAC}\)\(\widehat{CBD}=\widehat{ACO}=90^o\)

\(\Rightarrow\Delta BCD\approx\Delta CAO\left(g.g\right)\)\(\Rightarrow\frac{BC}{AC}=\frac{BD}{OC}\Rightarrow BC=\frac{AC.BD}{R}\)( 6 )

Xét 2 tam giác vuông BIC và BCD có :

\(\widehat{BCD}\)( chung ) ; \(\widehat{BIC}=\widehat{CBD}=90^o\)

\(\Rightarrow\Delta BIC\approx\Delta DBC\)( g.g )

\(\Rightarrow\frac{IB}{BD}=\frac{BC}{CD}\Rightarrow IB=\frac{BC.BD}{2R}\)( 7 )

Từ ( 6 ) và ( 7 ) suy ra : \(IB=\frac{AC.BD^2}{2R^2}\)( 8 )

Từ ( 5 ) và ( 8 ) suy ra : \(IF=\frac{IB}{2}\Rightarrow\)F là trung điểm của IB

\(\Rightarrow HF\)là đường trung bình của \(\Delta BCI\)\(\Rightarrow HF//CD\)

1 tháng 5 2020

Phông chữ bạn ơi

1 tháng 5 2020

cái moéo j đây