K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2015

vẽ hình rồi mình làm cho

a: Xét tứ giác PAOB có

góc PAO+góc PBO=180 độ

nên PAOB là tứ giác nội tiếp

b: Xét ΔQPD và ΔQAP có

góc QDP=góc QPA(=1/2*sđ cung AC)

góc PQD chung

=>ΔQPD đồng dạng với ΔQAP

=>QP/QA=QD/QP

=>QP^2=QA*QD

21 tháng 7 2019

A B C P Q R O D E S T K L M N H A B C I M N P E F R

a) Ta có O là tâm ngoại tiếp \(\Delta\)ABC nên ^OAC = 900 - ^ABC hay ^OAC + ^ABC = 900

Đường tròn đường kính OP cắt AB,AC tại D,E => ^ABC = ^AED. Do đó ^OAC + ^AED = 900

Suy ra OA vuông góc với DE (đpcm).

b) Bổ đề (Quan sát hình bên phải) Xét tam giác ABC nội tiếp đường tròn. Một đường tròn (R) tiếp xúc với hai cạnh AB,AC đồng thời tiếp xúc trong với đường tròn (ABC) lần lượt tại M,N,P. Khi đó MN đi qua tâm nội tiếp của tam giác ABC.

Thật vậy: Gọi I là tâm nội tiếp \(\Delta\)ABC. Ta thấy R vừa tiếp xúc dây AC tại N, vừa tiếp xúc trong với (ABC) tại P

Từ đó dễ suy ra PN đi qua điểm chính giữa (AC. Tương tự PM đi qua điểm chính giữa (AB

Gọi PM,PN cắt (ABC) lần lượt tại F,E thì CF cắt BE tại I (Vì I là tâm nội tiếp \(\Delta\)ABC)

Áp dụng ĐL Pascal cho bộ 6 điểm F,A,E,B,P,C ta thu được M,I,N thẳng hàng.

Quay trở lại bài toán: Gọi T là trung điểm OP. Hạ TH,TM,TN lần lượt vuông góc với DE,PB,PC

Có ^PEC = ^PBC = ^CAB => PE // AD. Tương tự PD // AE, suy ra tứ giác ADPE là hình bình hành

Dễ thấy T là tâm của (OP) và ^ETD = 2^EPD = 2^BAC = Sđ(BC(O) = const

Mà TD = TE = OP/2 = const nên độ dài đường cao của \(\Delta\)DTE không đổi hay TH =  const

\(\Delta\)HTE = \(\Delta\)MTP = \(\Delta\)NTP (Ch.gn) => TH = TM = TN. Do vậy T cố định và là tâm nội tiếp \(\Delta\)PQR

Nếu ta gọi (S) là đường tròn tiếp xúc với PQ,PR lần lượt tại K,L và tiếp xúc trong với (PQR)

Thì lúc này K,T,L thẳng hàng (Bổ đề). Theo tính chất 2 tiếp tuyến giao nhau thì PK = PL

=> \(\Delta\)KPL cân tại P và nhận PT làm đường cao. Ta thấy P,T,N đều cố định (cmt) nên PT,PN không đổi

Áp dụng hệ thức lượng trong tam giác vuông có PT2 = PN.PL => PL = const

Ta lại có PL2 = PT.PS, từ đây có PS = const. Mà S nằm trên tia PT cố định nên S cố định

Đồng thời SL2 = SK2 = PS2 - PL2 = const. Suy ra đường tròn (S) cố định

Vậy thì đường tròn ngoại tiếp \(\Delta\)PQR luôn tiếp xúc với đường tròn (S) cố định (đpcm).

*) Nhận xét: Đường tròn (R) được nêu trong bổ đề chính là đường tròn Mixtilinear của tam giác ABC.

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
25 tháng 5 2018

a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°

suy ra AMNB nội tiếp

b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)

xét tứ giác CPAB có góc CAB=CPB=90°

suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)

suy ra góc BCA=BPA(1)

góc PBA=PCA(2)

mà góc MPN=ACB=1/2sđcung MN(3)

góc PCA=PNM=1/2sđcung PM(4)

từ 1,3 suy ra góc ACB=MPN

từ 2,4 suy ra góc PNM=PBA

xét hai tam giác PAB và PMN có 

góc APB=MPN(cmt)

góc PNM=PBA(cmt)

suy ra hai tam giác đó đồng dạng (đpcm)

c, ta có góc PDN=PCN=1/2sđ cung PN(1)

góc PAC=PBC(CPAB nội tiếp)(2)

mà góc PBC+PCB=90°(3)

từ 1,2,3 suy ra góc DAC+ADE=90°

suy ra DN vuông với AC

xét hai tam giác PCM và ECG có góc C chung

góc CEG=CPM=90°

suy ra hai tam giác đó đồng dạng

suy ra PC/EC=CM/CG

suy ra PC.CG=EC.CM(đpcm)