Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác PAOB có
góc PAO+góc PBO=180 độ
nên PAOB là tứ giác nội tiếp
b: Xét ΔQPD và ΔQAP có
góc QDP=góc QPA(=1/2*sđ cung AC)
góc PQD chung
=>ΔQPD đồng dạng với ΔQAP
=>QP/QA=QD/QP
=>QP^2=QA*QD
a) Ta có O là tâm ngoại tiếp \(\Delta\)ABC nên ^OAC = 900 - ^ABC hay ^OAC + ^ABC = 900
Đường tròn đường kính OP cắt AB,AC tại D,E => ^ABC = ^AED. Do đó ^OAC + ^AED = 900
Suy ra OA vuông góc với DE (đpcm).
b) Bổ đề (Quan sát hình bên phải) Xét tam giác ABC nội tiếp đường tròn. Một đường tròn (R) tiếp xúc với hai cạnh AB,AC đồng thời tiếp xúc trong với đường tròn (ABC) lần lượt tại M,N,P. Khi đó MN đi qua tâm nội tiếp của tam giác ABC.
Thật vậy: Gọi I là tâm nội tiếp \(\Delta\)ABC. Ta thấy R vừa tiếp xúc dây AC tại N, vừa tiếp xúc trong với (ABC) tại P
Từ đó dễ suy ra PN đi qua điểm chính giữa (AC. Tương tự PM đi qua điểm chính giữa (AB
Gọi PM,PN cắt (ABC) lần lượt tại F,E thì CF cắt BE tại I (Vì I là tâm nội tiếp \(\Delta\)ABC)
Áp dụng ĐL Pascal cho bộ 6 điểm F,A,E,B,P,C ta thu được M,I,N thẳng hàng.
Quay trở lại bài toán: Gọi T là trung điểm OP. Hạ TH,TM,TN lần lượt vuông góc với DE,PB,PC
Có ^PEC = ^PBC = ^CAB => PE // AD. Tương tự PD // AE, suy ra tứ giác ADPE là hình bình hành
Dễ thấy T là tâm của (OP) và ^ETD = 2^EPD = 2^BAC = Sđ(BC(O) = const
Mà TD = TE = OP/2 = const nên độ dài đường cao của \(\Delta\)DTE không đổi hay TH = const
\(\Delta\)HTE = \(\Delta\)MTP = \(\Delta\)NTP (Ch.gn) => TH = TM = TN. Do vậy T cố định và là tâm nội tiếp \(\Delta\)PQR
Nếu ta gọi (S) là đường tròn tiếp xúc với PQ,PR lần lượt tại K,L và tiếp xúc trong với (PQR)
Thì lúc này K,T,L thẳng hàng (Bổ đề). Theo tính chất 2 tiếp tuyến giao nhau thì PK = PL
=> \(\Delta\)KPL cân tại P và nhận PT làm đường cao. Ta thấy P,T,N đều cố định (cmt) nên PT,PN không đổi
Áp dụng hệ thức lượng trong tam giác vuông có PT2 = PN.PL => PL = const
Ta lại có PL2 = PT.PS, từ đây có PS = const. Mà S nằm trên tia PT cố định nên S cố định
Đồng thời SL2 = SK2 = PS2 - PL2 = const. Suy ra đường tròn (S) cố định
Vậy thì đường tròn ngoại tiếp \(\Delta\)PQR luôn tiếp xúc với đường tròn (S) cố định (đpcm).
*) Nhận xét: Đường tròn (R) được nêu trong bổ đề chính là đường tròn Mixtilinear của tam giác ABC.
a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°
suy ra AMNB nội tiếp
b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)
xét tứ giác CPAB có góc CAB=CPB=90°
suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)
suy ra góc BCA=BPA(1)
góc PBA=PCA(2)
mà góc MPN=ACB=1/2sđcung MN(3)
góc PCA=PNM=1/2sđcung PM(4)
từ 1,3 suy ra góc ACB=MPN
từ 2,4 suy ra góc PNM=PBA
xét hai tam giác PAB và PMN có
góc APB=MPN(cmt)
góc PNM=PBA(cmt)
suy ra hai tam giác đó đồng dạng (đpcm)
c, ta có góc PDN=PCN=1/2sđ cung PN(1)
góc PAC=PBC(CPAB nội tiếp)(2)
mà góc PBC+PCB=90°(3)
từ 1,2,3 suy ra góc DAC+ADE=90°
suy ra DN vuông với AC
xét hai tam giác PCM và ECG có góc C chung
góc CEG=CPM=90°
suy ra hai tam giác đó đồng dạng
suy ra PC/EC=CM/CG
suy ra PC.CG=EC.CM(đpcm)