K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

Hình dễ thì cu tự vẽ nhá,chị vẽ xong ra nháp nhưng không biết vẽ trên này như thế nào,hình tự vẽ :))

Xét đường tròn (O : AB/2) có:

Góc AFB là góc nội tiếp chắn nửa đường tròn

=> Góc AFB= 90 độ

Xét tam giác ABC có AF là phân giác trong,mà có góc AFB = 90 độ

=>FB là phân giác ngoài của tâm giác ABC tại F

=>HG/DB= AH/ AD

<=> BH . AD = AH . BD -đpcm.

12 tháng 6 2017

Cho sửa tam giác ABC thành AFB đc chứ,không lại kêu lên tiếp.ok

17 tháng 11 2022

Câu 1:

a: =x^2+6x+9+4

=(x+3)^2+4>0

b: \(=x^2-4x+4+x^2+4xy+4y^2+9=\left(x-2\right)^2+\left(x+2y\right)^2+9>=9\)

Dấu = xảy ra khi x=2 và y=-x/2=-2/2=-1

NV
29 tháng 5 2020

Sửa đề: (C) \(x^2+y^2+2x-4y=0\)

Đường tròn tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{5}\)

Do MA; MB là tiếp tuyến \(\Rightarrow MA=MB\)

\(\widehat{AMB}=60^0\Rightarrow\Delta AMB\) đều \(\Rightarrow MA=MB=AB\)

\(\widehat{AIB}=180^0-60^0=120^0\)

\(\Rightarrow AB=\sqrt{IA^2+IB^2-2IA.IB.cos120^0}=\sqrt{15}\)

\(\Rightarrow IM=\sqrt{IA^2+AM^2}=\sqrt{5+15}=2\sqrt{5}\)

Do \(M\in d\Rightarrow M\left(m;m+1\right)\) \(\Rightarrow\overrightarrow{IM}=\left(m+1;m-1\right)\)

\(\Rightarrow\left(m+1\right)^2+\left(m-1\right)^2=20\)

\(\Leftrightarrow2m^2+2=20\Rightarrow m^2=9\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\)

Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(3;4\right)\\M\left(-3;-2\right)\end{matrix}\right.\)

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m. Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π) a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα). b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình. Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng...
Đọc tiếp

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m.

Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π)

a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα).

b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình.

Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng (△) và đường tròn (C).

a, (C): x2 + y2 + 2x - 4y + 4 = 0 và (△): mx - y + 2 = 0.

b, (C): x2 + y2 - 4x + 6y + 3 = 0 và (△): 3x - y + m = 0.

Bài 4: Cho đường tròn (C): x2 + y2 - 2x - 4y - 4 = 0 và (C'): x2 + y2 + 6x - 2y + 1 = 0.

a, Chứng minh (C) và (C') cắt nhau tại hai điểm A, B.

b, Cho điểm M(4;1). Chứng minh qua M có hai tiếp tuyến đến (C). Gọi E, F là hai tiếp điểm của hai tiếp tuyến trên với (C). Hãy lập phương trình đường tròn (C) ngoại tiếp với △ MEF.

0
22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JC}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(1)

ta có : \(\overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JD}+\overrightarrow{BI}+\overrightarrow{IJ}+\overrightarrow{JC}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{BI}\right)+\left(\overrightarrow{JC}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\) .........(2)

từ (1) (2) ta có \(2\overrightarrow{IJ}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\left(đpcm\right)\)

c) ta có : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

\(2\overrightarrow{OI}+2\overrightarrow{OJ}=\overrightarrow{0}\Leftrightarrow\overrightarrow{OI}+\overrightarrow{OJ}=\overrightarrow{0}\)

\(\Rightarrow O\) là trung điểm \(IJ\)

3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !