Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 28:
\(\overrightarrow{CB}=\left(1;-1;1\right)\)
Do (P) vuông góc BC nên nhận (1;-1;1) là 1 vtpt
Phương trình (P):
\(1\left(x-1\right)-1\left(y-1\right)+1\left(z+5\right)=0\)
\(\Leftrightarrow x-y+z+5=0\)
Câu 29:
Mạt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên nhận các vecto có dạng \(\left(k;-2k;3k\right)\) cũng là các vtpt với \(k\ne0\)
Do đó đáp án B đúng (ko tồn tại k thỏa mãn)
Với đáp án A thì \(k=-2\) , đáp án C thì \(k=3\), đáp án D có \(k=1\)
Câu 2)
Giả sử tồn tại MP cố định đó. Gọi PTMP mà \((d_k)\) luôn đi qua là
\((P):a(x-3)+b(y+1)+c(z+1)=0\) $(1)$
Ta chỉ cần xác định được \(a,b,c\) nghĩa là đã chứng minh được sự tồn tại của mặt phẳng cố định đó.
Vì \(d_k\in (P)\forall k\Rightarrow \overrightarrow{u_{d_k}}\perp \overrightarrow {n_P}\)
\(\Rightarrow a(k+1)+b(2k+3)+c(1-k)=0\) với mọi $k$
\(\Leftrightarrow k(a+2b-c)+(a+3b+c)=0\) với mọi $k$
\(\Leftrightarrow \left\{\begin{matrix} a+2b-c=0\\ a+3b+c=0\end{matrix}\right.\)
Từ đây ta suy ra \(a=\frac{-5b}{2}\) và \(c=\frac{-b}{2}\)
Thay vào \((1)\) và triệt tiêu \(b\) (\(b\neq 0\) bởi vì nếu không thì \(a=c=0\) mặt phẳng không xác định được)
\(\Rightarrow (P): -5x+2y-z+16=0\)
\((d_k)\parallel (6x-y-3z-13=0(1),x-y+2z-3=0(2))\)
\(\Leftrightarrow \overrightarrow {u_{d_k}}\perp \overrightarrow {n_1},\overrightarrow{n_2}\)\(\Rightarrow \overrightarrow{u_{d_k}}\parallel[\overrightarrow{n_1},\overrightarrow{n_2}]\)
Mà \(\overrightarrow{n_1}=(6,-1,-3);\overrightarrow{n_2}=(1,-1,2)\)
\(\Rightarrow \overrightarrow{u_{d_k}}\parallel(-5,-15,-5)\) hay \(\frac{k+1}{-5}=\frac{2k+3}{-15}=\frac{1-k}{-5}\Rightarrow k=0\)
Câu 1 mình đặt ẩn nhưng dài quá nhác viết, với lại mình thấy nó không hay và hiệu quả. Mình nghĩ với cách cho giá trị AB,CD cụ thể thế kia thì chắc chắn có cách nhanh gọn hơn. Nếu bạn có lời giải rồi thì post lên cho mình xem ké với.
\(d_2:\left\{{}\begin{matrix}x=-1\\y=t\\z=-1+t\end{matrix}\right.\)
Gọi giao điểm của \(\Delta\) và \(d_2\) là A
\(\Rightarrow A\left(-1;a;-1+a\right)\Rightarrow\overrightarrow{MA}=\left(-1;a-1;a-2\right)\)
Do \(\Delta\perp d_1\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{d1}}=0\)
\(\Leftrightarrow3.\left(-1\right)+4.\left(a-1\right)+1\left(a-2\right)=0\)
\(\Leftrightarrow5a-9=0\Rightarrow a=\frac{9}{5}\Rightarrow\overrightarrow{MA}=\left(-1;\frac{4}{5};\frac{-1}{5}\right)\)
Chọn \(\overrightarrow{u_{\Delta}}=\left(5;-4;1\right)\) là 1 vtcp của \(\Delta\)
\(\Rightarrow cos\alpha=\frac{\left|5.0-4.1+1.1\right|}{\sqrt{0+1+1}.\sqrt{25+16+1}}=\frac{\sqrt{21}}{14}\)
Kết quả xấu vậy ta
Bài 1:
ĐKXĐ:.............
Phương trình hoành độ giao điểm của \((d)\cap (C)\):
\(2(x-m)-\frac{2x-m}{mx+1}=0\Leftrightarrow m(2x^2-2mx-1)=0\)
Nếu \(m=0\Rightarrow (d)\equiv C\) (vô lý) nên $m\neq 0$ . Do đó \(2x^2-2mx-1=0\). $(1)$
Hai điểm $A,B$ có hoành độ chính là nghiệm của phương trình $(1)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=\frac{-1}{2}\end{matrix}\right.\)
\(d(O,AB)=\frac{|-2m|}{\sqrt{5}}\); \(AB=\sqrt{(x_1-x_)^2+(y_1-y_2)^2}=\sqrt{5(m^2+2)}\)
\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=|m|\sqrt{m^2+2}\)
Mặt khác, dễ dàng tính được \(M(m,0),N(0,-2m)\) nên \(S_{OMN}=\frac{OM.ON}{2}=\frac{|m||-2m|}{2}=m^2\)
Ta có \(S_{OAB}=3S_{OMN}\Leftrightarrow |m|\sqrt{m^2+2}=3m^2\)
\(\Rightarrow m=\pm \frac{1}{2}(m\neq 0)\)
Bài 2:
Ta có \(A(1,0,1)\in (d_1);B(3,5,4)\in (d_2); \overrightarrow{u_{d_1}}=(-1,1,1);\overrightarrow{u_{d_2}}=(4,-2,1)\)
Dễ thấy \([\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]\overrightarrow{AB}\neq 0\) nên suy ra $(d_1)$ và $(d_2)$ chéo nhau
Gọi \(\overrightarrow{n_P}\) là vector pháp tuyến của mặt phẳng $(P)$
Khi đó \(\overrightarrow{n_P}=[\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]=(3,5,-2)\)
Vì $(P)$ đi qua $(d_1)$ nên $(P)$ đi qua $A$. Do đó PTMP là:
\(3(x-1)+5y-2(z-1)=0\Leftrightarrow 3x+5y-2z-1=0\)
Bài toán quy về tìm phương trình đường vuông góc chung:
\(d_1\): \(\left\{{}\begin{matrix}x=2+t\\y=1-t\\z=2-t\end{matrix}\right.\)
- \(\left[\overrightarrow{u_{d1}};\overrightarrow{u_{d2}}\right]=\left(1;-1;2\right)\Rightarrow\)(P) chứa \(d_2\) và \(\left(P\right)//d_1\) có vtpt \(\overrightarrow{n_{\left(P\right)}}=\left(1;-1;2\right)\)
- (Q) chứa \(d_2\) và \(\left(Q\right)\perp\left(P\right)\Rightarrow\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{d2}}\right]=\left(2;-2;-2\right)=2\left(1;-1;-1\right)\)
\(\Rightarrow\) Phương trình (Q):
\(1\left(x-3\right)-1\left(y-2\right)-1\left(z-5\right)=0\Leftrightarrow x-y-z+4=0\)
Tọa độ A:
\(2+t-\left(1-t\right)-\left(2-t\right)+4=0\Rightarrow t=-1\Rightarrow A\left(1;2;3\right)\)
Đáp án ?!
1.
Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)
Khi đó:
\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng
Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)
Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)
2.
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ
\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận
Vậy ĐTHS có 2 tiệm cận
3.
Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m=\left\{5;-5\right\}\)
Đề bài sai hoặc đáp án sai
3.
\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)
\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)
\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)
\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)
\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)
\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)
4.
Gọi (Q) là mặt phẳng chứa d và vuông góc (P)
(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt
Phương trình (Q):
\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)
d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:
\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)
\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp
Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)
1/
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)
\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)
2/
Đặt \(z=x+yi\)
\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)
\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)
Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)
\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)
\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)
Ta có M 0 M ' 0 → = (−3; 4; −5)
a → = (2; 1; −2)
n → = M 0 M ' 0 → ∧ a → = (−3; −16; −11)