K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

19 tháng 1 2021


A B C D E i H

A) Ta có tam giác ABC cân

=> AB = AC 

Mà AD + DB = AB

      AE + EC = AC

=> DB = EC ( AD = AE gt)

b) đề phải là BE và CD cắt nhau tại I

Ta có AD = AE 

=> Tam giác ADE cân tại A

=> Góc ADE = Góc AED

=> Góc EDB = Góc DEC ( Cùng cộng nhau bằng 180 độ )

Xét Tam giác DEB và tám giác EDC có 

 BD = EC (cmt)

Góc EDB = Góc DEC (cmt)

DE là cạnh chung

=> Tam giác DEB và tam giác EDC (c-g-c)

=> Góc DBE = Góc ECD

=> Góc IBC = Góc ICB ( cùng cộng góc  DBE và Góc ECD bằng hai góc ABC và Góc ACB)

=> Tam giác IBC cân

c) Ta có tam giác ADE cân \(\Leftrightarrow\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Và tam giác ABC cân \(\Leftrightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2)\(\Leftrightarrow\widehat{ADE}=\widehat{ABC}\)

Hai góc này ở vị trí đồng vị bằng nhau 

=> DE // BC (đpcm)

d) Ta có điểm I cách đều cạnh AB và AC

=> AI là tia phân giác của tam giác ABC

trong tam giác cân tia phân giác cũng là đường cao 

=> AI vuông góc với BC

E) chứng minh HI là tia phân giác của tam giác BHC 

thì ba điểm thẳng hàng

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

SUy ra: AF=EC và DF=DC (1)

c: Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC(2)

Từ (1) và (2) suy ra BD⊥CF