Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đo góc ABC. Vẽ đường thẳng a đi qua A sao cho góc tạo bởi a và đường thẳng AB bằng góc ABC.
Ta được đường thẳng a đi qua A và song song với BC
Đo góc ACB. Vẽ đường thẳng b đi qua B sao cho góc tạo bởi b và đường thẳng BC bằng góc ACB.
Ta được đường thẳng b đi qua B và song song với AC
b) Có thể vẽ được chỉ 1 đường thẳng a, 1 đường thẳng b thoả mãn yêu cầu. Vì qua 1 điểm nằm ngoài một đường thẳng, chỉ có 1 đường thẳng song song với nó
Theo Tiên đề Euclid:
+) Qua điểm A nằm ngoài đường thẳng BC, chỉ có một đường thẳng song song với đường thẳng BC. Đường thẳng đó là a
+) Qua điểm B nằm ngoài đường thẳng AC, chỉ có một đường thẳng song song với đường thẳng BC. Đường thẳng đó là b
Như vậy, có thể vẽ được 1 đường thẳng a, 1 đường thẳng b.
Giải thích các bước giải:
a.Ta có xy//BC,MD//AB��//��,��//��
→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^
Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��
→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)
→AD=BM,MD=AB→��=��,��=��
Tương tự chứng minh được AE=MC,ME=AC��=��,��=��
→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��
→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)
b.Gọi AM∩BD=I��∩��=�
→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)
Mà AD=BM��=��
→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)
→IA=IM,IB=ID→��=��,��=��
Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^
Kết hợp AE=CM��=��
→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)
→ˆAIE=ˆMIC→���^=���^
→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�
→E,I,C→�,�,� thẳng hàng
→CE,AM,BD→��,��,�� đồng quy
Ta có hình vẽ sau:
a) Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)
Xét ΔABO và ΔACO có:
AO: cạnh cung
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
OB = OC (gt)
=> ΔABO = ΔACO (đpcm)
b) Vì AK // BC(gt) => \(\widehat{KAB}=\widehat{ABO}\) (so le trong)
Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{KAB}=\widehat{ACB}\) (*)
Vì ΔABO = ΔACO (ý a) => \(\widehat{A_1}=\widehat{A_2}\)
mà \(\widehat{A_1}=\widehat{ABK}\) (so le trong do AK // BC)
=> \(\widehat{A_2}=\widehat{ABK}\) (**)
Xét ΔABK và ΔACO có:
\(\widehat{KAB}=\widehat{ACB}\) (*)
AB = AC (gt)
\(\widehat{A_2}=\widehat{ABK}\) (**)
=> ΔABK = ΔACO (g.c.g)
=> AK = OC (đpcm)
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)