\(\left\{{}\begin{matrix}x=1+t\\y=2+t\end{matrix}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

Hỏi đáp Toán

NV
23 tháng 3 2022

Do \(C\in\Delta\) nên tọa độ có dạng: \(C\left(1+t;2+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(t+2;t\right)\\\overrightarrow{BC}=\left(t-2;t+1\right)\end{matrix}\right.\)

\(AC=BC\Rightarrow AC^2=BC^2\)

\(\Rightarrow\left(t+2\right)^2+t^2=\left(t-2\right)^2+\left(t+1\right)^2\)

\(\Rightarrow6t=1\Rightarrow t=\dfrac{1}{6}\)

\(\Rightarrow C\left(\dfrac{7}{6};\dfrac{13}{6}\right)\)

20 tháng 6 2020

M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)

MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4

MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5

MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4

= ( 2t + 1/2 )2 + 35/4 >= 35/4

vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)

#mã mã#

NV
1 tháng 6 2020

Pt của d1 dạng tổng quát:

\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)

Pt d2 dạng tổng quát:

\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)

b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp

Phương trình tổng quát:

\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)

Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)

Đề câu sau thiếu