Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KHông thể kết luận được rằng M(x)+N(x) luôn có nghiệm
VD như \(M\left(x\right)=x^2+3x+2\) có 2 nghiệm là x=-1 và x=-2
\(N\left(x\right)=5x+15\) có 1 nghiệm là x=-3
Nhưng \(M\left(x\right)+N\left(x\right)=x^2+8x+17=\left(x+4\right)^2+1>0\)
=>M(x)+N(x) vô nghiệm
`a)P(x)=M(x)+N(x)=-4x^3+5x-2+4x^3-3x+6`
`=2x+4`
`b)` Cho `P(x)=0`
`=>2x+4=0`
`=>2x=-4`
`=>x=-2`
Vậy nghiệm của `P(x)` là `x=-2`
`c)` Thay `x=2` vào `F(x)=0` có:
`3^2-2.2+C=0`
`=>9-4+C=0`
`=>5+C=0`
`=>C=-5`
c) F(x) có x = 2 là nghiệm
=> F(2) = 0 <=> 32 - 2.2 + C = 0 <=> 9 - 4 + C = 0 <=> 5 + C = 0 <=> C = -5
vậy C = -5
Lời giải:
$M(x)=x^2-x+2023=(x^2-x+\frac{1}{4})+\frac{8091}{4}=(x-\frac{1}{2})^2+\frac{8091}{4}$
Vì $(x-\frac{1}{2})^2\geq 0$ với mọi $x$ nên $M(x)\geq \frac{8091}{4}>0$ với mọi $x$
$\RIghtarrow M(x)\neq 0$ với mọi $x$ nên $M(x)$ không có nghiệm.
t có câu trả lời r