Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KHông thể kết luận được rằng M(x)+N(x) luôn có nghiệm
VD như \(M\left(x\right)=x^2+3x+2\) có 2 nghiệm là x=-1 và x=-2
\(N\left(x\right)=5x+15\) có 1 nghiệm là x=-3
Nhưng \(M\left(x\right)+N\left(x\right)=x^2+8x+17=\left(x+4\right)^2+1>0\)
=>M(x)+N(x) vô nghiệm
\(g\left(x\right)=x^2+x+2005=\left(x+\frac{1}{2}\right)^2+\frac{8019}{4}>0\forall x\in R\)
Cách 2 (thường dùng đối với lớp 7 nè):
\(g\left(x\right)=x\left(x+1\right)+2005\)
+)Với \(x\ge0\) thì \(x+1>0\)
Khi đó: \(g\left(x\right)=x\left(x+1\right)+2005>0\)
+)Với \(-1< x< 0\) thì x + 1 > 0.Ta lại có:\(x^2\ge0\)
Nên \(g\left(x\right)=x^2+x+2005>0\)
+)Với \(x\le-1\Rightarrow x+1\le0\)
Suy ra \(x\left(x+1\right)\ge0\Rightarrow g\left(x\right)=x\left(x+1\right)+2005>0\)
Trong cả ba khoảng trên,ta đều có g(x) khác 0. (đpcm)