Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có \(a\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)
\(b\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)
\(\Rightarrow c\left(x\right)=a\left(x\right)-b\left(x\right)=x^2+2x+2\)
b. \(c\left(x\right)=2x+1\Rightarrow x^2+2x+2=2x+1\Rightarrow x^2+1=0\)(vô lí )
Vậy không tồn tại x để \(c\left(x\right)=2x+1\)
c. Gỉa sử \(x^2+2x+2=2012\Rightarrow x^2+2x-2010=0\)
\(\Rightarrow\orbr{\begin{cases}x_1=-1+\sqrt{2011}\\x_2=-1-\sqrt{2011}\end{cases}}\)
Ta thấy \(x_1;x_2\in R\)
Vậy c(x) không thể nhận giá trị bằng 2012 với \(x\in Z\)
a) Ta có : \(C\left(x\right)+B\left(x\right)=A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-\left(x^5+3x^4-2x^3-x-8\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+x+8\)
\(=-9x^2+12x+2\)
b) Ta có : \(C\left(x\right)=2x+2\)
\(\Leftrightarrow-9x^2+12x+2=2x+2\)
\(\Leftrightarrow\) \(-9x^2+10x=0\)
\(\Leftrightarrow\) \(x\left(-9x+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{10}{9}\end{cases}}\)
c) Giả sử : \(C\left(x\right)=2012\)
\(\Leftrightarrow\)\(-9x^2+12x+2=2012\)
\(\Leftrightarrow-9x^2+12x-2010=0\)
\(\Leftrightarrow\)\(9x^2-12x+2010=0\)
\(\Leftrightarrow\left(9x^2-2.3x.2+4\right)+2006=0\)
\(\Leftrightarrow\left(3x-2\right)^2+2006=0\)(vô nghiệm vì \(\left(3x-2\right)^2\ge0\forall x\inℝ\))
Do đó với x nguyên thì C(x) không thể nhận giá trị bằng 2012.
a. \(c\left(x\right)=x^5-2x^3+3x^4-9x^2+11x-6-\left(3x^4+x^5-2x^3-8-10x^2+9x\right)\)
\(c\left(x\right)=x^2+2x+2\)
b. Để c(x)=2x+2 thì \(x^2=0\Rightarrow x=0\)
c. Với c(x)=2012, ta có:
\(c\left(x\right)=x^2+2x+2=\left(x+1\right)^2+1=2012\)
\(\Leftrightarrow\left(x+1\right)^2=2011\Rightarrow x+1\notin Z\Rightarrow x\notin Z\)
Sắp xếp lại các đa thức ta có:
\(A\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)
\(B\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)
a) Ta có: \(C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(=\left(x^5+3x^4-2x^3-9x^2+11x-6\right)-\left(x^5+3x^4-2x^3-10x^2+9x-8\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+10x^2-9x+8\)
\(=x^2+2x+2\)
b) \(C\left(x\right)=2x+2\)\(\Leftrightarrow x^2+2x+2=2x+2\)
\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)
Vậy \(x=0\)
c) \(C\left(x\right)=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)
Giả sử ta có: \(C\left(x\right)=2012\)\(\Rightarrow\left(x+1\right)^2+1=2012\)
\(\Leftrightarrow\left(x+1\right)^2=2011\)
Vì \(x\inℤ\)\(\Rightarrow\left(x+1\right)^2\)là số chính phương
mà 2011 không là số chính phương \(\Rightarrow\)C(x) không thể nhận giá trị bằng 2012 ( đpcm )
a: \(A\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)
\(B\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-2\)
\(C\left(x\right)=A\left(x\right)-B\left(x\right)=x^2+2x-4\)
b: C(x)=2x+2
\(\Leftrightarrow x^2-4=2\)
hay \(x\in\left\{\sqrt{6};-\sqrt{6}\right\}\)
c: C(x)=2012 nên \(x^2+2x-2016=0\)
\(\Leftrightarrow\left(x+1\right)^2=2017\)
mà x là số nguyên
nên \(x\in\varnothing\)
Ta có :
\(B\left(x\right)=3x^4+x^5-2\left(x^3+4\right)-10x^2+9x\)
\(=x^5+3x^4-2x^3-10x^2+9x-8\)
\(C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-\left(x^5+3x^4-2x^3-10x^2+9x-8\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+10x^2-9x+8\)
\(=x^2-2x+2\)