Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác AOD và BOC
có OA = OB; góc O chung ; OD=OC
=> tgiac AOD = BOC ( c-g-c)
=>AD =BC cạnh tương ứng
+ Ta có OA - OC = OB -OD => AC =BD
=> tam giác ABC = BAD ( c-c-c)
b) tam giác AIO = BIO => Góc IOA = góc IOB => OI là phân giác....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta\)OBC và \(\Delta\)ODA có:
OC = OA ( gt)
^BOC = ^DOA
OB = OD
=> \(\Delta\)OBC = \(\Delta\)ODA ( c.g.c) (1)
b) Có: OB = OD ; OA = OC ( gt)
=> OB - OA = OD - OC
=> AB = CD ( 2)
Từ (1) => ^OBC = ^ODA => ^ABK = ^CDK ( 3)
Từ (1) => ^OCB = ^OAD => ^BAK = ^DCK (4)
Từ (2) ; (3) ; (4) => \(\Delta\)AKB = \(\Delta\)CKD => AK = CK
Xét \(\Delta\)OAK và \(\Delta\)OCK có:
OA = OC
^OAK = ^OCK
AK = CK
=> \(\Delta\)OAK = \(\Delta\)OCK
=> ^AOK = ^COK
=> OK là phân giác của ^xOy.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 trc
Hình bác tự vẽ đc nhỉ
a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có
AB : cạnh chung
\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)
AD = AC (gt)
=> \(\Delta\) ABD = \(\Delta\) ABC (c-g-c )
b) Theo câu a ta có \(\Delta\) ABD = \(\Delta\) ABC
=> BD = BC ( 2 góc tương ứng )
+) Xét \(\Delta\) BDC có
\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)
=> \(\Delta\) BDC đều
c) +) Xét \(\Delta\) ABC vuông tại A
\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)
=> \(AC=\frac{1}{2}BC\) ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
+) Xét \(\Delta\)ABC vuông tại A
\(\Rightarrow BC^2=AC^2+AB^2\) ( định lí Py-ta-go)
\(\Rightarrow AB^2=BC^2-AC^2\)
Bạn tự làm nốt nhá
Cau kia đang bận k giúp đc r
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Xét \(\Delta AOK\)và \(\Delta BOK\)có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOK}=\widehat{BOK}\)(Vì Oz là phân giác của \(\widehat{xOy}\))
\(OK\): cạnh chung
Suy ra \(\Delta AOK\)\(=\Delta BOK\)(c.g.c)
\(\Rightarrow AK=BK\)(hai cạnh tương ứng)
Mà K nằm giữa A và B nên K là trung điểm của AB (đpcm)