K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

O B' B C' C I x y

Giải

Giả sử OC \(\ge\) OB (bài toán không mất tính tổng quát)

Dựng C' trên Ox sao cho OC' = OC

Dựng B' trên Oy sao cho OB' = OB

ta được: \(\Delta\)OBB' đều ; \(\Delta\)OCC' đều ; BB'CC' là hình thang cân.

Ta có: BC = BI + IC

B'C' = B'I + IC'

nên BC + B'C' = BI + B'I + IC + IC'

Vậy: 2BC \(\ge\) BB' + CC' hay 2BC \(\ge\) OB + OC

Xét ΔOBD có OA/AB=OC/CD

nên AC//BD


 

a: Xet ΔOCB và ΔOAD có

OC/OA=OB/OD

góc O chung

=>ΔOCB đồng dạng với ΔOAD

b: ΔOCB đồng dạng với ΔOAD

=>góc OCB=góc OAD

=>góc IAB=góc ICD

=>góc IBA=góc IDC; góc AIB=góc CID

a: Xet ΔOCB và ΔOAD có

OC/OA=OB/OD

góc O chung

=>ΔOCB đồng dạng với ΔOAD

b: ΔOCB đồng dạng với ΔOAD

=>góc OCB=góc OAD

=>góc IAB=góc ICD

=>góc IBA=góc IDC; góc AIB=góc CID