K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

x y O M I H A B

xét tam giác OMI và tam giác OAI có : OI chung

IM = IA (gt)

^OIM = ^OIA = 90

=> tam giác OMI = tam giác OAI (2cgv)

=> OM = OA (1)

xét tam giác OHM và tam giác OHB có : OH chung

HB = HM (gt)

^OHB = ^OHM = 90

=> tam giác OHM = tam giác OHB (2cgv) 

=> OB = OM và (1)

=> OA = OB

20 tháng 3 2020

Hình bạn tự kẻ nha , mình ghi bải giải 

Xét tam giác OAM có : OI là đường cao(Vì OI vuông góc với AM )

                                      OI là trung tuyến(Vì I là trung điểm AM)

=> Tam giác OAM cân tại O (vì có đường cao vừa là đường trung tuyến)

=> OA = OM (1)

Xét tam giác OBM có : OH là đường cao(Vì OH vuông góc với BM)

                                     OH là trung tuyến(Vì H là trung điểm BM)

=> Tam giác OBM cân tại O(Vì có đường cao vừa là đường trung tuyến)

=> OM = OB (2)

Từ (1) và (2) suy ra OA = OB (vì cùng bằng OM)

Học Tốt

Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

Suy ra: MA=MB

Xét ΔOKM vuông tại K và ΔOHM vuông tại H có

OM chung

\(\widehat{KOM}=\widehat{HOM}\)

Do đó;ΔOKM=ΔOHM

Suy ra: OH=OK

=>AH=BK

Xét ΔMAH vuông tại H và ΔMBK vuông tại K có

MA=MB

AH=BK

Do đó: ΔMHA=ΔMKB

a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có 

OA=OB(gt)

\(\widehat{AOB}\) chung

Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)

Suy ra: AH=BK(hai cạnh tương ứng)

27 tháng 2 2021

Bạn ơi còn phần b) và c) thì sao?

a: Xét ΔOAH và ΔOBH có

OA=OB

HA=HB

OH chung

Do đó: ΔOHA=ΔOHB

a: Xét ΔOAH và ΔOBH có 

OA=OB

OH chung

AH=BH

Do đó: ΔOAH=ΔOBH

Đề thấy sai sai!!

24 tháng 4 2020

x O y z M H K A B 1 2

a) Xét \(\Delta OMH\)và \(\Delta OMK\)có :

OM chung

\(\widehat{O_1}=\widehat{O_2}\)( do Oz là tia phân giác của ^xOy )

=> \(\Delta OMH=\Delta OMK\)( cạnh huyền - góc nhọn )

=> \(MH=MK\)( hai cạnh tương ứng )

b) Từ \(\Delta OMH=\Delta OMK\)=> \(OH=OK\)( hai cạnh tương ứng )

Xét \(\Delta MBK\)và \(\Delta MAH\)có :

\(MB=MA\)( gt )

\(MH=MK\)( cmt )

=> \(\Delta MBK=\Delta MAH\)( cạnh huyền - cạnh góc vuông )

=> \(BK=AH\)( hai cạnh tương ứng )

Ta có : \(OH=OA+AH\)

             \(OK=OB+BK\)

mà OH = OK ; AH = BK

=> OA = OB ( đpcm )