Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé còn lại minh giải cho.
Trên tia Ox lấy A" ; trên tia Oy lấy B' sao cho OA'=OB'=a
Ta có OA'+OB'= OA+OB =2a \Rightarrow AA'=BB'
Gọi H và K lần lượt là hình chiếu của A và B trên đường A'B'
ΔΔHAA'=ΔΔKBB'( cạnh huyền-Góc nhọn)
\Rightarrow HA'=KB',do đó HK=A'B'
Ta chứng minh đc HK<AB( dấu = \Leftrightarrow A trùng A',B trùng B'
do đó A'B'\leq AB.vậy AB nhỏ nhất \Leftrightarrow OA=OB=a
khôn hey! lên đây xin trợ giúp ak? bạn làm đc gần hết rồi nhưng mà tịt!
a) Xét tg OBC và tg ODA
góc O chung
OB= OD ( giả thiết) (*)
OC= OA (giả thiết)
=> tg OBC= tg ODA ( C-G-C)
Suy ra : AD= BC (1)
góc ABE= góc EDC (2)
góc OCB= góc OAD (3)
b) Xét tg EAB và tg ECD: góc ABE= góc EDC ( do 2) (4)
góc BAE= góc ECD [kề bù với 2 góc OCB và OAD do (3) ] (5)
Mặt khác: A nằm giữa O, B ( OA<OB) => AB= OB - OA
C nằm giữa O, D ( OC<OD) => CD= OD - OC
Mà do (*) => AB= CD (6)
Từ (4), (5) và (6) suy ra: tg AEB= tg CED (G-C-G)
c) tg AEB= tg CED => AE= CE
mà OA= OC
OE chung của 2 tam giác
Suy ra tg OAE= tg OCE (C-C-C) (**) => góc AOE = góc COA
Do AD cắt BC(giả thiết) tại E nằm trong góc xOy => Tia OE nằm giữa 2 tia OB, OD (***)
Từ (**) và (***) suy ra: OE là tia phân giác của góc xOy.
Hết. Chúc bạn học tốt
Thêm đề: Sao cho OA < OA'. Trên tia Oy lấy 2 điểm B và B' sao cho OB< OB'. Chứng minh rằng AB<A'B' .
Giải:
O A B A' B'
\(\Delta\)A'BO có: A'AB là góc ngoài của \(\Delta\)AOB
=> ^A'AB > ^AOB mà ^AOB là góc tù
=> ^A'AB là góc tù
=> A'B > AB (1)
\(\Delta\)A'BB' có: ^A'BB' là góc ngoài của \(\Delta\)A'BB'
=> ^A'BB' > A'OB mà ^A'OB là góc tù
=> A'BB' là góc tù
=> A'B' > A'B (2)
Từ (1) và (2) => A'B'> AB