Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, ta có K là 1 điểm thuộc tia phân giác góc xOy
mà KA vuông góc với Ox và KB vuông góc với Oy (gt)
⇒ KA=KB (t/c tia phân giác của 1 góc)
b, Xét ΔOAK vuông tại A và Δ OBK vuông tại B có
OK là canh chung
góc AOK = góc BOK (gt)
⇒ 2 tam giác bằng nhau
⇒ OA = OB ( 2 cạnh tương ứng)
⇒ΔOAB cân tại O
c, Xét ΔAKD vuông tại A và Δ BKE vuông tại B
AK=BK (cmt)
góc AKD = góc BKE ( đối đỉnh)
⇒ 2 tam giác trên bằng nhau
⇒ KD = KE (đpcm)
d, ΔOAK =ΔOBK ⇒ góc OKA = góc OKB ( 2 góc tương ứng)
mà góc AKD = góc BKE ( đối đỉnh)
⇒ góc OKA + góc AKD = góc OKB + góc BKE ⇒ góc OKD = góc OKE
xét ΔOKD và OKE dễ thấy chúng bằng nhau theo th (g-c-g) ⇒ OD=OE ⇒ ΔODE cân tại O mà OK là phân giác góc DOE ⇒ OK là đường cao của DE ⇒ OK ⊥DE (đpcm)
~Học tốt!~
a)xét tam giác vuông KOA và KOB có :góc KAO=góc KBO=90
OK chung
góc AOK=góc BOK
=>tam giác KAO=tam giác KBO=>KA=KB
b)xét tam giác KAD và KBE có :góc KAD=góc KBE
KA=KD
góc AKD=góc BKE
=>tam giác KAD=tam giác KBE =>KD=KE
c)có OA=OE(=OA+AD=OB+BE)=>tam giác ODE cân tại O có OK là đường phân giác=>ok đồng thời là đường cao=>OK vuông góc với DE
a) Xét tam giác AKO và tam giác BKO, ta có:
Góc KAO=Góc KBO(KA vuông góc với Ox;KB vuông góc với Oy)
OK là cạnh chung
Góc AOK=Góc BOK(OK là tia phân giác góc xOy)
Suy ra: tam giác AKO=tam giác BKO
Suy ra: KA=KB(yttư)(đpcm)
và OA=OB(yttư)
b) Suy ra : tam giác OAB là tam giác cân
c) Xét tam giác AKD và tam giác BKE, ta có:
Góc KAD=Góc KBE(KA vuông góc Ox;KB vuông góc Oy)
Góc AKD=Góc BKE(2 góc đối đỉnh)
KA=KB(theo câu a)
Suy ra : tam giác AKD=tam giác BKE(g.c.g)
Suy ra: KD=KE(yttư)(đpcm)
d) Ta có : tam gíac AKD=tam giác BKE(theo câu c)
Suy ra:AD=BE(yttư)
Mà OA=OB(theo câu a)
Suy ra:OA+AD=OD=OB+BE=OE
Gọi H là giao điểm của DE và OK
Xét tam giác HOD và tam giác HOE, ta có:
OD=OE(cmt)
Góc DOH= Góc EOH(OH là tia phân giác góc DOE)
OH là cạnh chung
Suy ra:tam giác HOD=tam giác HOE(c.g.c)
Suy ra: Góc DHO=Góc EHO(yttư)
Mà đây là 2 góc kề bù
Suy ra: Góc DHO=Góc EHO=180:2=90 độ
Suy ra :OH vuông góc DE
Mà O;H;K thẳng hàng
Suy ra: OK vuông góc với DE(đpcm)
a: Xét ΔOAK vuông tại A và ΔOBK vuông tạiB có
OK chung
\(\widehat{AOK}=\widehat{BOK}\)
Do đó: ΔOAK=ΔOBK
Suy ra: KA=KB
b: Ta có: ΔOAK=ΔOBK
nên OA=OB
hay ΔOAB cân tại O
a) ta có: K là một điểm thuộc tia phân giác góc xOy
mà \(KA\perp Ox⋮A\)(gt)
\(KB\perp Oy⋮B\)(gt)
=> KA = KB ( tính chất tia phân giác của một góc)
b) Xét tam giác OAK vuông tại A và tam giác OBK vuông tại B
có: OK là cạnh chung
góc AOK = góc BOK ( gt)
\(\Rightarrow\Delta OAK=\Delta OBK\left(ch-gn\right)\)
=> OA = OB ( 2 cạnh tương ứng)
=> tam giác OAB cân tại O ( định lí tam giác cân)
c) Xét tam giác AKD vuông tại A và tam giác BKE vuông tại B
có: AK = BK ( phần a)
góc AKD = góc BKE ( đối đỉnh)
\(\Rightarrow\Delta AKD=\Delta BKE\left(cgv-gn\right)\)
=> KD = KE ( 2 cạnh tương ứng)
d) ta có: \(\Delta OAK=\Delta OBK\) ( chứng minh phần a)
=> góc OKA = góc OKB ( 2 góc tương ứng)
mà góc AKD = góc BKE ( đối đỉnh)
=> góc OKA + góc AKD = góc OKB + góc BKE
=> góc OKD = góc OKE
Xét tam giác \(\Delta OKD\) và \(\Delta OKE\)
có: góc KOD =góc KOE ( gt)
OK là cạnh chung
góc OKD = góc OKE ( chứng minh trên)
\(\Rightarrow\Delta OKD=\Delta OKE\left(g-c-g\right)\)
=> OD = OE ( 2 cạnh tương ứng)
=> tam giác ODE cân tại O ( định lí tam giác cân)
mà OK là tia phân giác góc DOE (gt)
=> OK là đường cao của DE ( tính chất của tam giác cân)
\(\Rightarrow OK\perp DE\) ( định lí)
mk ko bít kẻ hình trên này, sorry bn nha!
K sao đâu nhưng cx cảm ơn bn vì đã lm bài giúp mk!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Trả lời:
a)XétΔOBN và ΔOAN có:
ONchung
góc BON= góc AON( ON là tia phân giác góc xOy)
góc OBN = góc OAN (=90*)
→ΔOBN=ΔOAN(ch-gn)
→NA= NB( hai cạnh tương ứng)
b)Vì ΔOBN=ΔOAN(cmt)
→OB=OA( hai cạnh tương ứng)
→ΔOAB cân
c)Xét ΔOBD và ΔOAE có:
OB=OA ( cmt)
góc BOD=góc AOE
góc EBD= góc DAE(=90*)
→ΔOBD=ΔOAE(g.c.g)
→BD=AE( hai cạnh tương ứng)
Áp dụng hệ thức công đoạn thẳng ta có :
BD=NB+ND
AE=NA+NE
mà BD=AE(cmt)
NA=NB(cmt)
→ND=NE(đpcm)
d)Gọi giao điểm của ON và DElà K
Vì ΔOAE=ΔOBD(cmt)
→OD =OE( hai cạnh tương ứng )
Xét ΔOEK và ΔODK có:
góc EOK= góc DOK(ON là tia phân giác góc xOy)
OK chung
OE = OD( cmt)
→ΔEOK=ΔODK(c.g.c)
→góc EKO=góc DKO(hai góc tương ứng)
mà chúng kề bù
→ON⊥DE(đpcm)
* chú ý: "*" là độ
~Học tốt!~
cho góc nhọn xOy và N là 1 điểm thuộc tia phân giác của góc xOy . kẻ NA vuông góc với Ox (A thuộc Ox) , NB vuông góc với Oy (B thuộc Oy )
a)ta phải cm : NA=NB
b) tam giác OAB là tam giác gì ? vì sao ?
c) đường thẳng BN cắt Ox tại D , đường thẳng AN cắt Oy tại E . Cm : ND=NE
d) CM : ON vuông góc với DE
Bạn tự vẽ hình nhé
a, Xét tam giác OBM và tam giác OAM có: góc BOM = AOM,OBM=OAM
Do đó : OMB=OMA
Xét tam giác OBM=tam giácOAM (c.g.c)
b,Ta có :tam giác OBM = tam giác OAM (ý a)
Do đó: OB=OA(2 cạnh tương ứng)
Nên:tam giác BOA cânt ại A
c, Ta có :tam giác OBM= tam giác OAM (ý a)
Do đó: MB=MA (2 cạnh tương ứng)
Xét tam giác MBE = tam giác MAD (g.c.g)
Do đó MD=ME (2 cạnh tương ứng )
d, Ta có :OE=OB+BE
và:OD=OA+AD
Mà : OA=OB(CMT);BE=AD(vì tam giác MBE = tam giác MAD )
Nên:OE=OD
Gọi OM cắt DE tại I
Xét tam giác DOI=tam giác EOI (c.g.c)
Do đó :OID = OIE (2 góc tương ứng)
Mà OID + OIE= 180 độ(kề bù)
Nên : OID = OIE = 90 độ
Do đó: OM vuông góc DE
Chỗ nào k hiểu nt hỏi mk nhé
x O y A B D E 1 2 M 1 2 I 1 2 1 1 2 2
a) Xét \(\Delta OMA\)và \(\Delta OMB\)có :
\(OM\)chung
\(\widehat{O_1}=\widehat{O_2}\)( vì OM là tia phân giác của \(\widehat{xOy}\))
=> \(\Delta OMA=\Delta OMB\)( cạnh huyền - góc nhọn )
=> \(MA=MB\)( hai cạnh tương ứng )
=> \(OA=OB\)( hai cạnh tương ứng )
b) Vì \(OA=OB\)=> \(\Delta OAB\)là tam giác cân tại O
c) ( Hình mình vẽ thiếu, bạn nhớ bổ sung nhé )
Ta có : \(MA\perp Ox\)=> \(\widehat{A_1}=\widehat{A_2}=90^0\)
Tương tự : \(MB\perp Ox\)=> \(\widehat{B_1}=\widehat{B_2}=90^0\)
Xét \(\Delta MAD\)và \(\Delta MBE\)có :
\(\widehat{A_2}=\widehat{B_2}\left(cmt\right)\)
\(MA=MB\left(gt\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(dd\right)\)
=> \(\Delta MAD=\Delta MBE\left(g.c.g\right)\)
=> \(MD=ME\)( hai cạnh tương ứng )
=> \(AD=BE\)( hai cạnh tương ứng )
d) Nối D với E được đoạn thẳng DE cắt OM tại I
Ta có : \(OA+AD=OD\)
\(OB+BE=OE\)
mà \(OA=OB\), \(AD=BE\)
=> \(OD=OE\)
Xét \(\Delta OID\)và \(\Delta OIE\)ta có :
\(OD=OE\left(cmt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(OM\)chung
=> \(\Delta OID\) = \(\Delta OIE\)( c.g.c )
=> \(\widehat{I_1}=\widehat{I_2}\)( hai góc tương ứng ) ( 1 )
Ta có : \(\widehat{I_1}+\widehat{I_2}=180^0\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{I_1}=\widehat{I_2}=\frac{180^0}{2}=90^0\)
=> \(OI\perp DE\)hay \(M\perp DE\)
* Ủng hộ nhé *
Xét \(\Delta OKA\) và \(\Delta OKB\) có :
OK : cạnh chung
\(\widehat{OAK}=\widehat{OBK}\left(=90^0\right)\)
\(\widehat{AOK}=\widehat{BOK}\) (gt)
\(\Rightarrow\Delta OKA=\Delta OKB\left(ch-gn\right)\)
\(\Rightarrow\) KA = KB
Vì \(\Delta OKA=\Delta OKB\)
\(\Rightarrow\) OA = OB
\(\Rightarrow\Delta OAB\) là tam giác cân
Xét \(\Delta AKD\) và \(\Delta BKE\) có :
\(\widehat{DAK}=\widehat{EBK}\left(=90^0\right)\)
\(\widehat{AKD}=\widehat{BKE}\) (đối đỉnh)
AK = KB (cmt)
\(\Rightarrow\Delta AKD=\Delta BKE\) (g . c . g)
\(\Rightarrow\) KD = KE
Gọi I là giao điểm của OK và DE
Xét \(\Delta OID\) và \(\Delta OIE\) có :
OI : cạnh chung
Vì OA = OB
Mà AD = AE (\(\Delta AKD=\Delta BKE\))
\(\Rightarrow OA+AD=OB+BE\)
\(\Rightarrow OD=OA\)
\(\widehat{DOI}=\widehat{EOI}\) (gt)
\(\Rightarrow\Delta OID=\Delta OIE\) (c . g . c)
\(\Rightarrow\widehat{OID}=\widehat{OIE}\)Mà \(\widehat{OID}+\widehat{OIE}=180^0\) (2 góc kề bù)
\(\Rightarrow\widehat{OID}=\widehat{OIE}=180\times\dfrac{1}{2}=90^0\)
\(\Rightarrow OI\perp DE\)