K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Xét \(\Delta OKA\)\(\Delta OKB\) có :

OK : cạnh chung

\(\widehat{OAK}=\widehat{OBK}\left(=90^0\right)\)

\(\widehat{AOK}=\widehat{BOK}\) (gt)

\(\Rightarrow\Delta OKA=\Delta OKB\left(ch-gn\right)\)

\(\Rightarrow\) KA = KB

\(\Delta OKA=\Delta OKB\)

\(\Rightarrow\) OA = OB

\(\Rightarrow\Delta OAB\) là tam giác cân

Xét \(\Delta AKD\)\(\Delta BKE\) có :

\(\widehat{DAK}=\widehat{EBK}\left(=90^0\right)\)

\(\widehat{AKD}=\widehat{BKE}\) (đối đỉnh)

AK = KB (cmt)

\(\Rightarrow\Delta AKD=\Delta BKE\) (g . c . g)

\(\Rightarrow\) KD = KE

Gọi I là giao điểm của OK và DE

Xét \(\Delta OID\)\(\Delta OIE\) có :

OI : cạnh chung

Vì OA = OB

Mà AD = AE (\(\Delta AKD=\Delta BKE\))

\(\Rightarrow OA+AD=OB+BE\)

\(\Rightarrow OD=OA\)

\(\widehat{DOI}=\widehat{EOI}\) (gt)

\(\Rightarrow\Delta OID=\Delta OIE\) (c . g . c)

\(\Rightarrow\widehat{OID}=\widehat{OIE}\)

\(\widehat{OID}+\widehat{OIE}=180^0\) (2 góc kề bù)

\(\Rightarrow\widehat{OID}=\widehat{OIE}=180\times\dfrac{1}{2}=90^0\)

\(\Rightarrow OI\perp DE\)

 Trả lời:

a, ta có K là 1 điểm thuộc tia phân giác góc xOy

mà KA vuông góc với Ox và KB vuông góc với Oy (gt)

⇒ KA=KB (t/c tia phân giác của 1 góc)

b, Xét ΔOAK vuông tại A và Δ OBK vuông tại B có

OK là canh chung 

góc AOK = góc BOK (gt)

⇒ 2 tam giác bằng nhau

⇒ OA = OB ( 2 cạnh tương ứng)

⇒ΔOAB cân tại O 

c, Xét ΔAKD vuông tại A và Δ BKE vuông tại B

AK=BK (cmt)

góc AKD = góc BKE ( đối đỉnh)

⇒ 2 tam giác trên bằng nhau

⇒ KD = KE (đpcm)

d, ΔOAK =ΔOBK ⇒ góc OKA = góc OKB ( 2 góc tương ứng)

mà góc AKD = góc BKE ( đối đỉnh)

⇒ góc OKA + góc AKD = góc OKB + góc BKE ⇒ góc OKD = góc OKE 

xét ΔOKD và OKE dễ thấy chúng bằng nhau theo th (g-c-g) ⇒ OD=OE ⇒ ΔODE cân tại O mà OK là phân giác góc DOE ⇒ OK là đường cao của DE ⇒ OK ⊥DE (đpcm)

                                                                ~Học tốt!~

16 tháng 2 2016

a)xét tam giác vuông KOA và KOB có :góc KAO=góc KBO=90

OK chung

góc AOK=góc BOK

=>tam giác KAO=tam giác KBO=>KA=KB

b)xét tam giác KAD và KBE có :góc KAD=góc KBE

KA=KD

góc AKD=góc BKE

=>tam giác KAD=tam giác KBE =>KD=KE

c)có OA=OE(=OA+AD=OB+BE)=>tam giác ODE cân tại O có OK là đường phân giác=>ok đồng thời là đường cao=>OK vuông góc với DE

a) Xét tam giác AKO và tam giác BKO, ta có:

Góc KAO=Góc KBO(KA vuông góc với Ox;KB vuông góc với Oy)

OK là cạnh chung

Góc AOK=Góc BOK(OK là tia phân giác góc xOy)

Suy ra: tam giác AKO=tam giác BKO

Suy ra: KA=KB(yttư)(đpcm)

      và  OA=OB(yttư)

b) Suy ra : tam giác OAB là tam giác cân

c) Xét tam giác AKD và tam giác BKE, ta có:

Góc KAD=Góc KBE(KA vuông góc Ox;KB vuông góc Oy)

Góc AKD=Góc BKE(2 góc đối đỉnh)

KA=KB(theo câu a)

Suy ra : tam giác AKD=tam giác BKE(g.c.g)

Suy ra: KD=KE(yttư)(đpcm)

d) Ta có : tam gíac AKD=tam giác BKE(theo câu c)

Suy ra:AD=BE(yttư)

Mà OA=OB(theo câu a)

Suy ra:OA+AD=OD=OB+BE=OE

Gọi H là giao điểm của DE và OK

Xét tam giác HOD và tam giác HOE, ta có:

OD=OE(cmt)

Góc DOH= Góc EOH(OH là tia phân giác góc DOE)

OH là cạnh chung

Suy ra:tam giác HOD=tam giác HOE(c.g.c)

Suy ra: Góc DHO=Góc EHO(yttư)

Mà đây là 2 góc kề bù

Suy ra: Góc DHO=Góc EHO=180:2=90 độ

Suy ra :OH vuông góc DE

Mà O;H;K thẳng hàng

Suy ra: OK  vuông góc với DE(đpcm)

a: Xét ΔOAK vuông tại A và ΔOBK vuông tạiB có

OK chung

\(\widehat{AOK}=\widehat{BOK}\)

Do đó: ΔOAK=ΔOBK

Suy ra: KA=KB

b: Ta có: ΔOAK=ΔOBK

nên OA=OB

hay ΔOAB cân tại O

17 tháng 5 2018

a) ta có: K là một điểm thuộc tia phân giác góc xOy

mà \(KA\perp Ox⋮A\)(gt)

\(KB\perp Oy⋮B\)(gt)

=> KA = KB ( tính chất tia phân giác của một  góc)

b) Xét tam giác OAK vuông tại A  và tam giác OBK vuông tại B

có: OK là cạnh chung

góc AOK = góc BOK ( gt)

\(\Rightarrow\Delta OAK=\Delta OBK\left(ch-gn\right)\)

=> OA = OB ( 2 cạnh tương ứng)

=> tam giác OAB cân tại O ( định lí tam giác cân)

c) Xét tam giác AKD vuông tại A và tam giác BKE vuông tại B

có: AK = BK ( phần a)

góc AKD = góc BKE ( đối đỉnh)

\(\Rightarrow\Delta AKD=\Delta BKE\left(cgv-gn\right)\)

=> KD = KE ( 2 cạnh tương ứng)

d) ta có: \(\Delta OAK=\Delta OBK\) ( chứng minh phần a)

=> góc OKA = góc OKB ( 2 góc tương ứng) 

mà góc AKD = góc BKE ( đối đỉnh)

=> góc OKA + góc AKD = góc OKB + góc BKE

=> góc  OKD = góc OKE

Xét tam giác \(\Delta OKD\) và \(\Delta OKE\)

có: góc KOD =góc KOE ( gt)

           OK là cạnh chung

     góc OKD = góc OKE ( chứng minh trên)

\(\Rightarrow\Delta OKD=\Delta OKE\left(g-c-g\right)\)

=> OD = OE ( 2 cạnh tương ứng)

=> tam giác ODE cân tại O ( định lí tam giác cân)

mà OK là tia phân giác góc DOE (gt)

=> OK là đường cao của DE ( tính chất của tam giác cân)

\(\Rightarrow OK\perp DE\) ( định lí)

mk ko bít kẻ hình trên này, sorry bn nha!

18 tháng 5 2018

K sao đâu nhưng cx cảm ơn bn vì đã lm bài giúp mk!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Trả lời:

a)XétΔOBN và ΔOAN có:

ONchung

góc BON= góc AON( ON là tia phân giác góc xOy)

góc OBN = góc OAN (=90*)

→ΔOBN=ΔOAN(ch-gn)

→NA= NB( hai cạnh tương ứng)

b)Vì ΔOBN=ΔOAN(cmt)

→OB=OA( hai cạnh tương ứng)

→ΔOAB cân 

c)Xét ΔOBD và ΔOAE có:

OB=OA ( cmt)

góc BOD=góc AOE 

góc EBD= góc DAE(=90*)

→ΔOBD=ΔOAE(g.c.g)

→BD=AE( hai cạnh tương ứng)

Áp dụng hệ thức công đoạn thẳng ta có :

BD=NB+ND

AE=NA+NE

mà BD=AE(cmt)

NA=NB(cmt)

→ND=NE(đpcm)

d)Gọi giao điểm của ON và DElà K

Vì ΔOAE=ΔOBD(cmt)

→OD =OE( hai cạnh tương ứng )

Xét ΔOEK và ΔODK có:

góc EOK= góc DOK(ON là tia phân giác góc xOy)

OK chung

OE = OD( cmt)

→ΔEOK=ΔODK(c.g.c)

→góc EKO=góc DKO(hai góc tương ứng)

mà chúng kề bù 

→ON⊥DE(đpcm)

* chú ý: "*" là độ

                                                          ~Học tốt!~

cho góc nhọn xOy và N là 1 điểm thuộc tia phân giác của góc xOy . kẻ NA vuông góc với Ox (A thuộc Ox) , NB vuông góc với Oy (B thuộc Oy ) 

a)ta phải cm : NA=NB 

b) tam giác OAB là tam giác gì ? vì sao ?

c) đường thẳng BN cắt Ox tại D , đường thẳng AN cắt Oy tại E . Cm : ND=NE

d) CM : ON vuông góc với DE

Bài 1 : cho góc nhọn xOy và M là một điểm thuộc tia phân giác góc xOy . kẻ ma vuông góc với ox ( a thuộc Ox ) , mb vuông góc oy ( b thuộc oy ) a) cm : ma = mb  b) tam giác oab là tam giác gì ? Vì sao ? c) Đường thẳng bm cắt ox tại d , đường thẳng am cắt oy tại e . c/m md = me  d) c/m : om vuông góc de Bài 2 : cho tam giác abc có B = 45° , c=120° . Trên tia đối của tia cb lấy điểm d sao cho cd = 2cb . Tính góc...
Đọc tiếp

Bài 1 : cho góc nhọn xOy và M là một điểm thuộc tia phân giác góc xOy . kẻ ma vuông góc với ox ( a thuộc Ox ) , mb vuông góc oy ( b thuộc oy )

 

a) cm : ma = mb 

 

b) tam giác oab là tam giác gì ? Vì sao ?

 

c) Đường thẳng bm cắt ox tại d , đường thẳng am cắt oy tại e . c/m md = me 

 

d) c/m : om vuông góc de

 

Bài 2 : cho tam giác abc có B = 45° , c=120° . Trên tia đối của tia cb lấy điểm d sao cho cd = 2cb . Tính góc adb 

Bài 3 : cho góc nhọn xOy và M là một điểm thuộc tia phân giác của của góc xOy . kẻ MA vuông góc Ox ( A thuộc Ox ) , MB vuông góc với Oy ( B thuộc Oy )

a) c/m : ma = mb 

b) tam giác oab là tam giác gì ? Vì sao? 

c) đường thẳng bm cắt Ox tại D , đường thẳng am cắt Oy tại E . c/m : MD = ME 

d) c/m : OM vuông góc với DE

Giúp mình nha cảm ơn các bạn nhiều 

0
13 tháng 4 2020

Bạn tự vẽ hình nhé

a, Xét tam giác OBM và tam giác OAM có: góc BOM = AOM,OBM=OAM

Do đó : OMB=OMA

Xét tam giác OBM=tam giácOAM (c.g.c)

b,Ta có :tam giác OBM = tam giác OAM (ý a)

Do đó: OB=OA(2 cạnh tương ứng)

Nên:tam giác BOA cânt ại A 

c, Ta có :tam giác OBM= tam giác OAM (ý a)

Do đó: MB=MA (2 cạnh tương ứng)

Xét tam giác MBE = tam giác MAD (g.c.g)

Do đó MD=ME (2 cạnh tương ứng )

d, Ta có :OE=OB+BE

và:OD=OA+AD

Mà : OA=OB(CMT);BE=AD(vì tam giác MBE = tam giác MAD )

Nên:OE=OD

Gọi OM cắt DE tại I

Xét tam giác DOI=tam giác EOI (c.g.c)

Do đó :OID = OIE (2 góc tương ứng)

Mà OID + OIE= 180 độ(kề bù)

Nên : OID = OIE = 90 độ

Do đó: OM vuông góc DE 

Chỗ nào k hiểu nt hỏi mk nhé

13 tháng 4 2020

x O y A B D E 1 2 M 1 2 I 1 2 1 1 2 2

a) Xét \(\Delta OMA\)và \(\Delta OMB\)có :

\(OM\)chung

\(\widehat{O_1}=\widehat{O_2}\)( vì OM là tia phân giác của \(\widehat{xOy}\))

=> \(\Delta OMA=\Delta OMB\)( cạnh huyền - góc nhọn )

=> \(MA=MB\)( hai cạnh tương ứng )

=> \(OA=OB\)( hai cạnh tương ứng )

b) Vì \(OA=OB\)=> \(\Delta OAB\)là tam giác cân tại O

c) ( Hình mình vẽ thiếu, bạn nhớ bổ sung nhé )

Ta có : \(MA\perp Ox\)=> \(\widehat{A_1}=\widehat{A_2}=90^0\)

Tương tự : \(MB\perp Ox\)=> \(\widehat{B_1}=\widehat{B_2}=90^0\)

Xét \(\Delta MAD\)và \(\Delta MBE\)có : 

\(\widehat{A_2}=\widehat{B_2}\left(cmt\right)\)

\(MA=MB\left(gt\right)\)

\(\widehat{M_1}=\widehat{M_2}\left(dd\right)\)

=> \(\Delta MAD=\Delta MBE\left(g.c.g\right)\)

=> \(MD=ME\)( hai cạnh tương ứng )

=> \(AD=BE\)( hai cạnh tương ứng )

d) Nối D với E được đoạn thẳng DE cắt OM tại I

Ta có : \(OA+AD=OD\)

            \(OB+BE=OE\)

mà \(OA=OB\)\(AD=BE\)

=> \(OD=OE\)

Xét \(\Delta OID\)và \(\Delta OIE\)ta có :

\(OD=OE\left(cmt\right)\)

\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)

\(OM\)chung

=> \(\Delta OID\) =  \(\Delta OIE\)( c.g.c )

=> \(\widehat{I_1}=\widehat{I_2}\)( hai góc tương ứng ) ( 1 )

Ta có : \(\widehat{I_1}+\widehat{I_2}=180^0\)( 2 )

Từ ( 1 ) và ( 2 ) => \(\widehat{I_1}=\widehat{I_2}=\frac{180^0}{2}=90^0\)

=> \(OI\perp DE\)hay \(M\perp DE\)

* Ủng hộ nhé *