Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BẠN TỰ VẼ HÌNH NHÉ MÌNH GIẢI THÔI NHA ^^
Giải
a) Xét tam giác ODE, có:
IK là đường trung bình(I t/điểm OD và K trung điểm OE)
=>IK // DE
Vậy:IKED là hình thang
b) Ta có IAKO là hcn (A=AIO=AKO=90 độ)
=>AK=IO và AK // IO.
Mà D,I,O thẳng hàng và DI=IO (D đxứng O qua I)
=>AK//DI và AK=DI
=>AKDI là hbh.
c)Ta có tam giác ABC có góc A=90 độ và Góc C=30 độ
=>góc B=60 độ
Và tam giác ABC vuông ở A và AM là đường trung tuyến
=> AM =1/2 BC =>AM=BM
=>Tam giác ABM cân ở M. Và Góc B= 60độ (cmt)
=> Tam giác ABM đều => AB=AM=BM
Vậy chu vi tam giác ABC= 3 x 7=21 (cm)
a. ta có D đ/x với M qua E \Rightarrow AB là trung trực của DM \Rightarrow AB vuông DM tại E
tương tự ta có DN vuông AC tại N.
Xét tứ giác AEDF có : ^EAF=^AFD=^AED=900EAF^=AFD^=AED^=900 \Rightarrow đpcm
b. DE vuông AB, AC vuông AB \Rightarrow DE // AC
Xét tg ABC có D là trung điểm và DE // AC \Rightarrow E là trung điểm của AB ( đli về đường trung bình trong tg)
Xét tứ giác ADBM có AB cắt DM tại E là trung điểm của mỗi đoạn và AB vuông DM \Rightarrow đpcm
c. Áp dụng Pytago cho tg vuông ABC \Rightarrow AC = 5
dễ dàng tính diện tích tg ABC = 30 (cm2cm2)
a, xét tam giác IHE và tam giác BHA có :
góc IHE = góc BHA = 90
IH = HB do I đx B qua H (gt)
AH = HE do A đx E qua H (gT)
=> tam giác IHE = tam giác BHA (2cgv)
=> IE = AB (đn)
góc EIH = góc HBA (đn) mà 2 góc này slt => IE // AB (đl)
=> IEBA là hình bnhf hành (dh/9
AB _|_ AC (gt)
IE // AB (cmt)
=> IE _|_ AC (đl)
a) t.g ADH=CBK (ch-gn)
=> AH=CK
mà AH=//CK (cùng vuông góc vs BD)
=> AHCK là hbh
b) do O là trung điểm của AC nên O cũng là trung điểm của HK (t/c hbh)
=>O,H,K thẳng hàng và HO=OK
=> h và K đối xứng qua O
a: B và C đối xứng với nhau qua Ax
nên AB=AC(1)
D và C đối xứng với nhau qua Ay
nên AD=AC(2)
Từ (1) và (2) suy ra BA=AD
b: Ta có: AB=AC
nên ΔABC cân tại A
mà Ax là đường cao
nên Ax là tia phân giác của góc CAB(1)
Ta có: AC=AD
nên ΔACD cân tại A
mà Ay là đường cao
nên Ay là tia phân giác của góc DAC(2)
Từ (1) và (2) suy ra \(\widehat{BAD}=2\cdot\left(\widehat{xAC}+\widehat{yAC}\right)=2\cdot90^0=180^0\)
hay B,A,D thẳng hàng
mà AB=AD
nên A là trung điểm của BD