Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác AOM và tam giác BOM có
OA=OB(gt)
AOM=BOM(gt)
OM chung
=> tam giác AOM= tam giác BOM (cgc)
b. Theo câu a, tam giác AOM= tam giác BOM (cgc)
=> OAM=OBM hay OAC=OBD
Xét tam giác OAC và tam giác OBD có
OAC=OBD( c/m trên)
OA=OB(gt)
AOB chung
=> tam giác OAC= tam giác OBD (gcg)
=> AC=BD
c. Gọi giao điểm giữa Ot và AB là I
Xét tam giác IAO và tam giác IBO có
OA=OB(gt)
OAI=OBI(gt)
OI chung
=> tam giác IAO= tam giác IBO(cgc)
=> AIO=BIO
Mà AIO+BIO=180*( kề bù)
=> AIO=BIO= 90*
=> OI vg AB hay Ot vg AB
Ta lại có d vg AB=> d//Ot
a )Xét ΔAOC và ΔBOD ,có:
BD = AC (gt)
BO = OA ( O là trung điểm của AB)
Góc xAB = ABy ( gt )
\(\Rightarrow\) ΔAOC = ΔBOD( c-g-c)
=> OC = OD ( 2 cạnh tương ứng )
Xét ΔAOE và ΔBOF,có:
Góc EAO = góc OBF(gt)
OA = OB (gt)
AE = BF ( gt)
=> ΔAOE = ΔBOF(c - g -c)
=> OE = OF ( 2 cạnh tương ứng )
b) Ta có :
Ax và By thuộc 2 nửa mặt phẳng đối nhau
mà : - E và C nằm trên tia Ax , D và F nằm trên tia By (1)
- EF và DC cắt nhau tại O (2)
Từ (1) và (2) => C , O , D thẳng hàng
c)Xét ΔEOD và ΔCOF,có:
Góc DOE = góc COF( 2 góc đối đỉnh)
OE = OF ( Theo câu a)
OC = OD ( Theo câu a)
=> ΔDOE = ΔCOF(c-g-c)
=> ED = CF ( 2 cạnh tương ứng )
a.Ta có: OD=OB+BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180o(kề bù) (1)
OBC+EBD=180o(kề bù) (2)
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180o
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)
Xét TG OBE và OAE, ta có:
OA=OB(gt); EA=EB(cmt); OE:cạnh chung
=>TG OBE=TG OAE(c.c.c)
=>BOE=EOA(2 cạnh tương ứng)
mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy
a) Xét \(\Delta\)OAD và \(\Delta\)OCB có:
OA = OC (gt)
\(\widehat{O}\) chung
OD = OB (gt)
=> \(\Delta\)OAD = \(\Delta\)OCB (c.g.c)
=> AD = CB (2 cạnh t/ư)
b) Vì \(\Delta\)OAD = \(\Delta\)OCB (câu a)
=> \(\widehat{ODA}\) = \(\widehat{OBC}\) (2 góc t/ư)
hay \(\widehat{CDI}\) = \(\widehat{ABI}\)
và \(\widehat{OAD}\) = \(\widehat{OCB}\) (2 góc t/ư)
Ta có: \(\widehat{OAD}\) + \(\widehat{IAB}\) = 180o (kề bù)
\(\widehat{OCB}\) + \(\widehat{ICD}\) = 180o (kề bù)
mà \(\widehat{OAD}\) = \(\widehat{OCB}\)
=> \(\widehat{IAB}\) = \(\widehat{ICD}\) Lại có: OA + AB = OB OC + CD = OD mà OA = OC; OB = OD => AB = CD Xét \(\Delta\)BAI và \(\Delta\)DCI có:\(\widehat{IAB}\) = \(\widehat{ICD}\) (c/m trên)
BA = DC (c/m trên)
\(\widehat{CDI}\) = \(\widehat{ABI}\) (c/m trên)
=> \(\Delta\)BAI = \(\Delta\)DCI (g.c.g)
=> AI = IC (2 cạnh t/ư)
c) Gọi giao điểm của OI và BD là E.
Do \(\Delta\)BAI = \(\Delta\)DCI (câu b)
=> AI = CI (2 cạnh t/ư)
Xét \(\Delta\)AOI và \(\Delta\)COI có:
AO = CO (gt)
OI chung
AI = CI (c/m trên)
=> \(\Delta\)AOI = \(\Delta\)COI (c.c.c)
=> \(\widehat{AOI}\) = \(\widehat{COI}\) (2 góc t/ư)
hay \(\widehat{BOE}\) = \(\widehat{DOE}\)
Xét \(\Delta\)BEO và \(\Delta\)DEO có:
BO = DO (gt)
\(\widehat{BOE}\) = \(\widehat{DOE}\) (c/m trên)
OE chung
=> \(\Delta\)BEO = \(\Delta\)DEO (c.g.c)
=> \(\widehat{BEO}\) = \(\widehat{DEO}\) (2 góc t/ư)
mà \(\widehat{BEO}\) + \(\widehat{DEO}\) = 180o (kề bù)
=> \(\widehat{BEO}\) = \(\widehat{DEO}\) = 90o
Do đó OE \(\perp\) BD hay OI \(\perp\) BD.
a,Xét \(\Delta AOD\)và\(\Delta COB\)có
\(OD=OB\)
\(\widehat{AOC}\)là góc chung
\(OA=OC\)
\(\rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)
\(\rightarrow AD=BC\)( 2 cạnh tương ứng )
b,Ta có \(\left\{{}\begin{matrix}OB=OD\\OA=OC\end{matrix}\right.\rightarrow OB-OA=OD-OC\)
Hay \(AB=CD\)
Mặt khác : \(\Delta AOB=\Delta COB\)
\(\Rightarrow\widehat{ODA}=\widehat{OBC}hay\widehat{CDI}=\widehat{ABI}\)
\(\Delta AOD=\Delta COB\)
\(\Rightarrow\widehat{AOD}=\widehat{OCD}hay\widehat{OAI}=\widehat{OCI}\)
\(\widehat{OAI}=\widehat{OCI}=180^0\)
\(\widehat{DCI}+\widehat{OCI}=180^0\)
Mà \(\widehat{OAI}=\widehat{OCI}\Rightarrow\widehat{BAI}=\widehat{DCI}\)
Xét \(\Delta AIB\)và\(\Delta CID\)có
\(\widehat{ABI}=\widehat{CDI}\)
\(AB=CD\)
\(\widehat{BAI}=\widehat{DCI}\)
\(\Rightarrow\Delta ABI=\Delta CDI\)
\(\Rightarrow AI=CI\)(2 cạnh tương ứng )