Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Xét tam giác $AOI$ và $BOI$ có:
\(AO=BO\) (giả thiết)
\(OI\) chung
\(\widehat{AOI}=\widehat{BOI}\) (do $Oz$ là tia phân giác \(\widehat{xOy}\) )
\(\Rightarrow \triangle AOI=\triangle BOI(c.g.c)\)
b) Gọi $K$ là giao điểm $AB$ và $OI$
Xét tam giác $AOK$ và $BOK$ có:
\(\left\{\begin{matrix}
AO=BO(gt)\\
\text{OK chung}\\
\widehat{AOK}=\widehat{BOK}(cmt)\end{matrix}\right.\Rightarrow \triangle AOK=\triangle BOK(c.g.c)\)
\(\Rightarrow \widehat{AKO}=\widehat{BKO}\)
Mà \(\widehat{AKO}+\widehat{BKO}=\widehat{AKB}=180^0\Rightarrow \widehat{AKO}=\widehat{BKO}=90^0\)
\(\Rightarrow OK\perp AB\Rightarrow OI\perp AB\) (đpcm)
O y x B A z I H 1 2
GT : \(\widehat{xOy};\) \(\widehat{O_1}=\widehat{O_2}\); OA= OB
\(I\in z\left(I\ne O\right)\);
b, AB cắt Oz tại H
KL : a, Tam giác OAI = tam giác OIB
b, HA = HB
c, AB \(\perp\)Oz
Ta có hình vẽ:
Gọi H là giao điểm của OI và AB
a/ Xét tam giác AOI và tam giác BOI có
-AOI = BOI (vì Oz là phân giác góc O)
-OI: cạnh chung
-OA = OB (GT)
Vậy tam giác AOI = tam giác BOI (c.g.c)
b/ Ta có: tam giác AOI = tam giác BOI (câu a)
=> AH = BH ( 2 cạnh tương ứng)
Xét tam giác AOH và tam giác BOH có
-OH: cạnh chung
-AH = BH
-OA = OB (GT)
Vậy tam giác AOH = tam giác BOH (c.c.c)
=> AHO = BHO ( 2 góc tương ứng) (1)
Mà AHO + BHO = 1800 (kề bù) (2)
Từ (1), (2) => AHO = BHO = 900
=> AB \(\perp\)OI
Vậy AB vuông góc với OI (đpcm)
hình,giả thiết, kết luận tự làm
chứng minh
a) xét tam giác AOI và tam giác BOI, ta có :
OI là cạnh chung
OA = OB
góc BOI =góc AOI
=> tam giác AOI= tam giác BOI (c-g-c)
b) gọi M là giao điểm của AB và OI
xét tam giác OAM và tam giác OBM, ta có ;
OM là cạnh chung
OA =OB
góc OAM =góc OBM
=> tam giác OAM = tam giác OBM 9 (c-g-c)
=>góc OMA = góc OMB ( cặp góc tương ứng )
mà góc OMA + góc OMB = 180 độ
=> góc OMA = góc OMB = 90 độ (đpcm)