K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Lời giải:

a)

Xét tam giác $AOI$ và $BOI$ có:
\(AO=BO\) (giả thiết)

\(OI\) chung

\(\widehat{AOI}=\widehat{BOI}\) (do $Oz$ là tia phân giác \(\widehat{xOy}\) )

\(\Rightarrow \triangle AOI=\triangle BOI(c.g.c)\)

b) Gọi $K$ là giao điểm $AB$ và $OI$

Xét tam giác $AOK$ và $BOK$ có:
\(\left\{\begin{matrix} AO=BO(gt)\\ \text{OK chung}\\ \widehat{AOK}=\widehat{BOK}(cmt)\end{matrix}\right.\Rightarrow \triangle AOK=\triangle BOK(c.g.c)\)

\(\Rightarrow \widehat{AKO}=\widehat{BKO}\)

\(\widehat{AKO}+\widehat{BKO}=\widehat{AKB}=180^0\Rightarrow \widehat{AKO}=\widehat{BKO}=90^0\)

\(\Rightarrow OK\perp AB\Rightarrow OI\perp AB\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Hình vẽ:
Violympic toán 7

17 tháng 11 2016

Ta có hình vẽ:

Gọi H là giao điểm của OI và AB

a/ Xét tam giác AOI và tam giác BOI có

-AOI = BOI (vì Oz là phân giác góc O)

-OI: cạnh chung

-OA = OB (GT)

Vậy tam giác AOI = tam giác BOI (c.g.c)

b/ Ta có: tam giác AOI = tam giác BOI (câu a)

=> AH = BH ( 2 cạnh tương ứng)

Xét tam giác AOH và tam giác BOH có

-OH: cạnh chung

-AH = BH

-OA = OB (GT)

Vậy tam giác AOH = tam giác BOH (c.c.c)

=> AHO = BHO ( 2 góc tương ứng) (1)

Mà AHO + BHO = 1800 (kề bù) (2)

Từ (1), (2) => AHO = BHO = 900

=> AB \(\perp\)OI

Vậy AB vuông góc với OI (đpcm)

17 tháng 11 2016

hình,giả thiết, kết luận tự làm

chứng minh

a) xét tam giác AOI và tam giác BOI, ta có :

OI là cạnh chung

OA = OB

góc BOI =góc AOI

=> tam giác AOI= tam giác BOI (c-g-c)

b) gọi M là giao điểm của AB và OI

xét tam giác OAM và tam giác OBM, ta có ;

OM là cạnh chung

OA =OB

góc OAM =góc OBM

=> tam giác OAM = tam giác OBM 9 (c-g-c)

=>góc OMA = góc OMB ( cặp góc tương ứng )

mà góc OMA + góc OMB = 180 độ

=> góc OMA = góc OMB = 90 độ (đpcm)

 

 

13 tháng 12 2016

Hình bạn tự vẽ nha

Xét \(\Delta AIO\)\(\Delta BIO\) có:

OI chung

\(\widehat{AOI} = \widehat{BOI}\) (Oz là tia phân giác của \(\widehat{xOy}\) (gt))

OA = OB (gt)

\(\Rightarrow\)\(\Delta AIO = \Delta BIO\) (cgc)

b) Vì \(\Delta AIO = \Delta BIO\) (cmt)

\(\Rightarrow IB=IA\) (2 cạnh tương ứng)

mà OA = OB (gt)

\(\Rightarrow OI\) là đường trung trực của AB

hay \(AB \perp OI\)

 

7 tháng 8 2017

a

cạnh chung oi

oa=ob

O1=o2

(vì p giác mà)

b

ta phai cmr tam giác oia hoặc oib là tam giác vuông

9 tháng 8 2017

Giải câu b ra giùm mình với ạ!!

21 tháng 11 2016

Ta có hình vẽ:

x O y z A B I H

a) Vì Oz là phân giác của xOy nên \(xOz=yOz=\frac{xOy}{2}\)

Xét Δ AOI và Δ BOI có:

OA = OB (gt)

AOI = BOI (cmt)

OI là cạnh chung

Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)

b) Xét Δ AOH và Δ BOH có:

OA = OB (gt)

AOH = BOH (câu a)

OH là cạnh chung

Do đó, Δ AOH = Δ BOH (c.g.c)

=> AHO = BHO (2 góc tương ứng)

Mà AHO + BHO = 180o (kề bù) nên AHO = BHO = 90o

=> \(AB\perp OI\left(đpcm\right)\)

21 tháng 11 2016

a) xét \(\Delta AOI,\Delta BOI\) có :

OA = OB ( GT )

OI cạnh chung

\(\widehat{AOI}\) = \(\widehat{BOI}\) ( vì Oz phân giác \(\widehat{xOy}\) )

\(\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\)

b )

gọi H là giao điểm AB , OI

xét \(\Delta OAH,\Delta OBH\)

OH chung

\(\widehat{AOH}\) = \(\widehat{BOH}\) ( OI phân giác \(\widehat{xOy}\) )

OA = OB ( GT )

\(\Rightarrow\Delta OAH=\Delta BOH\left(c.g.c\right)\)

ta có : \(\widehat{AHO}\) = \(\widehat{BHO}\) ( 2 góc tương ứng )

\(\widehat{AOH}\) + \(\widehat{BHO}\) = 180o ( 2 góc kề bù )

\(\Rightarrow\widehat{AOH}\) = \(\widehat{BHO}\) = \(\frac{180^O}{2}\) = 90o

\(\Rightarrow AB\perp OI\) tại H

13 tháng 12 2021

a: Xét ΔOAI và ΔOBI có 

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOAI=ΔOBI

13 tháng 12 2021

\(a,\left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OI\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\\ b,\text{Gọi }AB\cap OI=\left\{H\right\}\\ \left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOH=\Delta BOH\left(c.g.c\right)\\ \Rightarrow\widehat{AHO}=\widehat{BHO}\\ \text{Mà }\widehat{AHO}+\widehat{BHO}=180^0\\ \Rightarrow\widehat{AHO}=\widehat{BHO}=90^0\\ \Rightarrow OI\bot AB\)

21 tháng 2 2020

a) xét ΔAOI,ΔBOIΔAOI,ΔBOI có :

OA = OB ( GT )

OI cạnh chung

AOIˆAOI^ = BOIˆBOI^ ( vì Oz phân giác xOyˆxOy^ )

⇒ΔAOI=ΔBOI(c.g.c)⇒ΔAOI=ΔBOI(c.g.c)

b )

gọi H là giao điểm AB , OI

xét ΔOAH,ΔOBHΔOAH,ΔOBH có

OH chung

AOHˆAOH^ = BOHˆBOH^ ( OI phân giác xOyˆxOy^ )

OA = OB ( GT )

⇒ΔOAH=ΔBOH(c.g.c)⇒ΔOAH=ΔBOH(c.g.c)

ta có : AHOˆAHO^ = BHOˆBHO^ ( 2 góc tương ứng )

mà AOHˆAOH^ + BHOˆBHO^ = 180o ( 2 góc kề bù )

⇒AOHˆ⇒AOH^ = BHOˆBHO^ = 180O2180O2 = 90o

⇒AB⊥OI⇒AB⊥OI tại H

      link mình nha   

7 tháng 1 2018

1 2 O A I x y z B H 1 2

a/ xét \(\Delta AOI;\Delta BOI\) có :

\(\hept{\begin{cases}OA=OB\\\widehat{O1}=\widehat{O2}\\IOchung\end{cases}}\)

\(\Leftrightarrow\Delta AOI=\Delta BOI\left(c-g-c\right)\)

b, gọi H là giao điểm của AB ;  OI

Xét \(\Delta OAH;\Delta OBH\) có :

\(\hept{\begin{cases}OA=OB\\\widehat{O1}=\widehat{O2}\\AHchung\end{cases}}\)

\(\Leftrightarrow\Delta OAH=\Delta OBH\left(c-g-c\right)\)

\(\Leftrightarrow\widehat{H1}=\widehat{H2}\)

Mà \(\widehat{H1}+\widehat{H2}=180^0\)

\(\Leftrightarrow\widehat{H1}=\widehat{H2}=\frac{180^0}{2}=90^0\)

\(\Leftrightarrow OI\perp AB\left(đpcm\right)\)