Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó: ΔOMA=ΔOMB
Xét ΔONA và ΔONB có
ON chung
NA=NB
OA=OB
Do đó: ΔONA=ΔONB
b: Ta có: OA=OB
nen O nằm tren đường trung trực của AB(1)
Ta có: MA=MB
nen M nằm trên đường trung trực của AB(2)
Ta có: NA=NB
nên N nằm trên đường trung trực của AB(3)
TỪ (1), (2)và (3) suy ra O,M,N thẳng hàng
c: Xét ΔAMN và ΔBMN có
AM=BM
MN chung
AN=BN
Do đó ΔAMN=ΔBMN
x O y A B . . M N
a) Xét \(\Delta\)OMA và \(\Delta\)OMB:
OA = OB (đề bài)
AM = BM (vì có cùng bán kính)
Cạnh OM chung
=> \(\Delta\)OMA = \(\Delta\)OMB (c.c.c)
Xét \(\Delta\)ONA và \(\Delta\)ONB
OA = OB (đề bài)
AN = BN (vì cò cùng bán kính)
Cạnh ON chung
=> \(\Delta\)ONA = \(\Delta\)ONB (c.c.c)
b) Ta có \(\Delta\)OMA = \(\Delta\)OMB (theo câu a)
=> ^AOM = ^BOM (2 góc tương ứng)
=> OM là tia phân giác của ^AOB
Lại có \(\Delta\)ONA = \(\Delta\)ONB (theo câu a)
=> ^AOM = ^BOM (2 góc tương ứng)
=> ON là tia phân giác của ^AOB
Mà mỗi góc chỉ có duy nhất một tia phân giác
=> OM và ON trùng nhau
hay O, M, N thẳng hàng (ĐPCM)
c) Xét \(\Delta\)AMN và \(\Delta\)BMN
AM = BM (vì có cùng bán kính)
AN = BN (vì có cùng bán kính)
cạnh MN chung
=> \(\Delta\)AMN = \(\Delta\)BMN (c.c.c)
d) Ta có \(\Delta\)AMN = \(\Delta\)BMN (theo câu c)
=> ^AMN = ^BMN (2 góc tương ứng)
=> MN là tia phân giác của ^AMB
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó;ΔOMA=ΔOMB
Xét ΔONA và ΔONB có
ON chung
NA=NB
OA=OB
Do đó; ΔONA=ΔONB
b: Ta có: OA=OB
nênO nằm trên đường trung trực của AB(1)
Vì MA=MB
nên M nằm trên đường trung trực của AB(2)
VìNA=NB
nen N nằm trên đường trung trực của AB(3)
Từ (1), (2) và (3) suy ra O,M,N thẳng hàng
O x y N M A B
Gợi ý :
a) Chứng minh được \(\widehat{AOM}=\widehat{BOM}\)
=> Dễ dàng chứng minh được \(\Delta OMA=\Delta OMB\)
Chứng minh \(\Delta ONA\) và \(\Delta ONB\) có :
\(OA=OB\left(gt\right)\)
\(ON:chung\)
\(\widehat{AOM}=\widehat{BOM}\)
=> \(\Delta ONA\)=\(\Delta ONB\) (c.g.c)
Mình có việc bận bạn dựa vào đó làm thử nhé!
Bài này mk làm đc rồi
Chỉ đăng lên cho dui thôi
Ta có hình vẽ:
x y O A B M N a/ Xét tam giác OMA và tam giác OMB có:
OM: cạnh chung
OA = OB (GT)
MA = MB (vì có cùng bán kính)
=> tam giác OMA = tam giác OMB (c.c.c)
Xét tam giác ONA và tam giác ONB có:
ON: cạnh chung
OA = OB (GT)
AN = BN (vì có cùng bán kính)
=> tam giác ONA = tam giác ONB (c.c.c)
b/ Ta có: OA = OB
AM = MB (do tam giác OMA = tam giác OBM)
AN = NB (do tam giác ONA = tam giác ONB)
=> O,M,N thẳng hàng
c/ Xét tam giác AMN và tam giác BMN có:
MN: cạnh chung
AM = MB (vì tam giác OMA = tam giác OMB)
AN = NB (vì tam giác ONA = tam giác ONB)
=> tam giác AMN = tam giác BMN (c.c.c)
d/ Ta có: tam giác AMN = tam giác BMN (câu c)
=> \(\widehat{AMN}\)=\(\widehat{BMN}\)( 2 góc tương ứng)
=> MN là phân giác của góc AMB (đpcm)
mik cũng đang định hỏi câu này nè, mai mik cũng học luôn à, cám ơn bạn nhé❤
O A B x y M N *: Nhớ bổ sung thêm đường tròn tâm A,B
a) Xét \(\Delta\)OMA và \(\Delta\)OMB:
OA = OB
OM chung
AM = BM
=> \(\Delta\)OMA = \(\Delta\)OMB (c.c.c)
b) Xét \(\Delta\)ONA và \(\Delta\)ONB :
OA = OB
ON chung
AN = BN
=> \(\Delta\)ONA = \(\Delta\)ONB (c.c.c)
c) Ta có: AM = BM và M nằm trong góc xOy^ => M nằm trên tia phân giác của xOy^ (1)
và AN = BN và N nằm trong góc xOy^ => N nằm trên tia phân giác của góc xOy^ (2)
Từ (1) và (2) => O,M,N thẳng hàng
d) Xét \(\Delta\)AMN và \(\Delta\)BMN :
AM = BM
MN chung
AN = BN
=> \(\Delta\)AMN = \(\Delta\)BMN (c.c.c)
e) Ta có: AN = BN và N nằm trong AMB^
=> MN là tia phân giác của góc AMB^
a: Xét ΔOMA và ΔOMB có
OA=OB
OM chung
MA=MB
Do đó ΔOMA=ΔOMB
Xét ΔONA và ΔONB có
ON chung
NA=NB
OA=OB
Do đó: ΔONA=ΔONB
b: Ta có: OA=OB
nên O nằm trên đường trung trực của AB(1)
Ta có: NA=NB
nên N nằm trên đường trung trực của AB(2)
Ta có: MA=MB
nên M nằm trên đường trung trực của AB(3)
Từ (1), (2)và (3) suy ra O,M,N thẳng hàng