Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : C
Câu 2 : C
Câu 3 : A B C D M K H 1 2
a) Xét tam giác AMB và tam giác DMC , có :
AM = DM ( gt )
BM = CM ( gt )
góc AMB = góc DMC ( đối đỉnh )
=> tam giác AMB = tam giác DMC
=> DC = AB ( hai cạnh tương ứng )
Vậy DC = AB
b) Xét tam giác AKM và tam giác DHM , có :
góc AKM = góc DHM ( = 90o )
góc M1 = góc M2 ( đối đỉnh )
MA = MD ( gt )
=> tam giác AKM = tam giác DHM ( g-c-g )
=> HD = AK ( hai cạnh tương ứng )
=> góc KAM = góc HDM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên HD // AK ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy HD = AK ; HD // AK ( đpcm )
Hình bạn tự vẽ nha!
Bài 3:
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại \(A.\)
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)
b) Vì \(BM=CN\left(gt\right).\)
=> \(BM+BC=BC+CN\)
=> \(MC=BN.\)
Xét 2 \(\Delta\) \(ABN\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(BN=CM\left(cmt\right)\)
=> \(\Delta ABN=\Delta ACM\) (c . g . c)
=> \(AN=AM\) (2 cạnh tương ứng).
c) Theo câu b) ta có \(AN=AM.\)
=> \(\Delta AMN\) cân tại \(A.\)
=> \(\widehat{M}=\widehat{N}\) (tính chất tam giác cân).
Xét 2 \(\Delta\) vuông \(EBM\) và \(FCN\) có:
\(\widehat{MEB}=\widehat{CFN}=90^0\left(gt\right)\)
\(\widehat{M}=\widehat{N}\left(cmt\right)\)
\(BM=CN\left(gt\right)\)
=> \(\Delta EBM=\Delta FCN\) (cạnh huyền - góc nhọn)
=> \(BE=CF\) (2 cạnh tương ứng).
=> \(ME=NF\) (2 cạnh tương ứng).
d) Đề là chứng minh \(AE=AF.\)
Ta có: \(\left\{{}\begin{matrix}AM=AN\left(cmt\right)\\ME=NF\left(cmt\right)\end{matrix}\right.\)
=> \(AM-ME=AN-NF.\)
=> \(AE=AF\left(đpcm\right).\)
Mình chỉ nghĩ thêm câu d) thôi nhé.
Chúc bạn học tốt!
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{z}=\frac{x+y+z}{y+z+x}=1\) ( Do \(x+y+z\ne0\) )
\(\Rightarrow x=y=z\)
Thay \(y\) và \(z\) bởi \(x\) ta được :
\(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)
Vậy : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=1\)
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó;ΔOMA=ΔOMB
Xét ΔONA và ΔONB có
ON chung
NA=NB
OA=OB
Do đó; ΔONA=ΔONB
b: Ta có: OA=OB
nênO nằm trên đường trung trực của AB(1)
Vì MA=MB
nên M nằm trên đường trung trực của AB(2)
VìNA=NB
nen N nằm trên đường trung trực của AB(3)
Từ (1), (2) và (3) suy ra O,M,N thẳng hàng