K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔABD=ΔEBD)

\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AM=EC(Hai cạnh tương ứng)

c) Xét ΔBAE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)

mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)

và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)

nên \(\widehat{AEC}=\widehat{EAM}\)

10 tháng 12 2021

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

28 tháng 2 2017

  A;áp dụng pitago ta có : BC2 = 202+152=625

       suy ra : BC= \(\sqrt{625}\) =25

 Xét tam giác :\(\Delta abc\)và  \(\Delta ahc\)ta có :

          \(\widehat{c}\) ( góc chung)

     \(\widehat{ahc}\)= \(\widehat{bac}\) = 90 độ

   vậy \(\Delta ABC\)đồng dạng với  \(\Delta AHC\)( g-g)

                     suy ra  : \(\frac{15}{25}\)=  \(\frac{AH}{20}\)  

                     vậy AH= 12 cm \(\left(ĐPCM\right)\)

     B)  ta có :áp dụng pitago ta có:  BH^2 = 15^2-12^2=81 cm

                  vậy BH =\(\sqrt{81}\)=\(9\)cm

      áp dụng đường phân giác trong tam giác ta lại có

                \(\frac{DH}{DB}\)= \(\frac{15}{12}\)  

         \(_{_{ }\Leftrightarrow}\)\(\frac{9-DB}{DB}\) = \(\frac{15}{12}\)

       \(\Leftrightarrow\)    \(\left(9-DB\right)\)\(_{\times}\) \(12\)=  \(15\times DB\)

       \(\Leftrightarrow\)    108 -12DB=15DB

         \(\Leftrightarrow\)  108 = 15DB+12DB

            \(\Rightarrow\)DB=4 cm \(\left(ĐPCM\right)\)

                  DH= BH - BD= 9 - 4=5 \(\left(ĐPCM\right)\)

          phần C mình gửi sau nhé bạn xin lỗi nhé ^_^

1 tháng 3 2017

                                                                                 \(GIẢI\)\(TIEP\)

ta có : \(\widehat{HCF}\)= \(\widehat{CHA}\) =\(90\)độ ( giả thiết)

    mà hai góc này lại ở vị trí sole trong suy ra :HA song song với CF

          suy ra: \(\widehat{CFH}\)= \(\widehat{AHF}\) ( HAI GÓC SOLE TRONG )

                     \(\widehat{FCA}\) =\(\widehat{HAC}\)( HAI GÓC SOLE TRONG ) 

       TỪ hai điều trên suy ra : \(\widehat{CMF}\)=  \(\widehat{HMA}\)         

          mà hai góc này lại ở vị trí đối đỉnh của CA và HF suy ra:

    HMF thẳng hàng