Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=0<=>x3 -6x2+11x -6=0
<=>(x-1)(x-2)(x-3)=0
<=>x-1=0 hoặc x-2=0 hoặc x-3=0
<=>x=1 hoặc 2 hoặc 3
Vậy tập nghiệm của f(x) là {1;2;3}
f﴾x﴿=0<=>x 3 ‐6x 2+11x ‐6=0
<=>﴾x‐1﴿﴾x‐2﴿﴾x‐3﴿=0
<=>x‐1=0 hoặc x‐2=0 hoặc x‐3=0
<=>x=1 hoặc 2 hoặc 3
Vậy tập nghiệm của f﴾x﴿ là {1;2;3}
\(\hept{\begin{cases}x_1=\frac{5}{2}\\x_2=\frac{7}{3}\end{cases}}\)
\(f\left(x\right)=x^3-x+7\)
\(g\left(x\right)=-x^3+8x-14\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)
Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)
\(\Rightarrow x=1\)
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
Ta thay nghiệm x=-1 vào phương trình tổng quát được:
a(-1)2+b(-1) +c=0
=> a-b+c=0 hay a-b=-c (đpcm)
Áp dụng: ta thấy: a=8 b=11 c=3, a-b+c= 8-11+3=0
=> phương trình có một nghiệm là x=-1
<Mở rộng hơn nữa là phương trình dạng như trên có một nghiệm là -1 và nghiệm còn lại có dạng là -c/a>
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+2x+5\)
b: Q(x)-P(x)=6
\(\Leftrightarrow-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)
=>3x2=6
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
P(x)=15 - 4x3 + 3x2 + 2x - x3 - 10
và Q(x)=5 + 4x3 + 6x2 - 5x - 9x3 + 7x
a) P(x)= -5x^3 + 3x^2 + 2x + 5.
Q(x)= -5x^3 + 6x^2 + 2x + 5.
b)
P(x)= -5x^3 + 3x^2 + 2x + 5 tại x= 1/2.
P(x)= -5 . 1/2^3 + 3 . 1/2^2 + 2 . 1/2 +5 = 49/8.
Q(x)= -5x^3 + 6x^2 + 2x + 5 tại x= 1/2
Q(x)= -5 . 1/2^3 + 6 . 1/2^2 + 2 . 1/2 +5= 55/8.
c)
P(x) - Q(x)= (-5x^3 + 3x^2 + 2x + 5) - (-5x^3 + 6x^2 + 2x + 5)
Kết quả -3x^2.
Nhớ nhấn like đấy
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
Đặt f(x)=0
\(\Leftrightarrow x^3+6x^2+11x-6=0\)
\(\Leftrightarrow x\in\left\{-3+\sqrt{15};-3-\sqrt{15}\right\}\)