K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

Bài 1:

\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)

\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)

Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)

Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)

 

22 tháng 10 2021

Bài 2:

Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1

Gọi đa thức dư là \(ax+b\)

Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên

\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)

Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)

Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)

Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)

Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)

\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Lời giải:

Theo định lý Bê-du về phép chia đa thức thì số dư của $f(x)$ chia cho $x-a$ có số dư là $f(a)$. 

Áp dụng vào bài:

$f(2)=8a+4b+10=14\Leftrightarrow 2a+b=1(1)$

$f(-1)=-a+b-14=-16\Leftrightarrow -a+b=-2(2)$

Từ $(1); (2)\Rightarrow a=1; b=-1$

 

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

3 tháng 9 2021

Gọi r(x) = ax + b là dư trong phép chia f(x) cho (x-1)(x-2)

Theo đề bài ta có :

f(x) = (x-1).A(x) + 2 [ A(x) là thương trong phép chia f(x) cho (x-1) ](1)

f(x) = (x+2).B(x) + 4 [ B(x) ___________________________ (x+2) ](2)

f(x) = (x-1)(x-2).C(x) + ax + b [ C(x) ___________________ (x-1)(x+2) ](3)

Với x = 1 ta có \(\hept{\begin{cases}\left(1\right)=2\\\left(3\right)=a+b\end{cases}}\Rightarrow a+b=2\)(*)

Với x = -2 ta có \(\hept{\begin{cases}\left(2\right)=4\\\left(3\right)=-2a+b\end{cases}}\Rightarrow-2a+b=4\)(**)

Từ (*) và (**) \(\Rightarrow\hept{\begin{cases}a+b=2\\-2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=-2\\a+b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-\frac{2}{3}\\b=\frac{8}{3}\end{cases}}\)

Vậy dư là -2/3x + 8/3

27 tháng 8 2021

Mik mới bít ý b thôi , còn ý a mik đang nghĩ nha ^^

undefined

14 tháng 3 2017

Vì f(x) chia x+2 dư 10 nên f(x) -10 chia hết cho x+2

Theo Bezout ta có :

f(-2) - 10 = 0

=> f(-2) = 0

Cmtt f(2) = 22

Lại có : f(x) = -5x(x2 - 4) + ax+b (*)

Thay x = -2 vào (*) ta được:

f(-2) = -2a+b = 10

Thay x = 2 vào (*) ta được :

f(2) = 2a+b = 22

Giải bất phương trình \(\left\{{}\begin{matrix}-2a+b=10\\2a+b=22\end{matrix}\right.\)

Suy ra a= 3 ; b= 16

Vậy f(x) = -5x(x2-4)+3x+16