Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(x\right)-g\left(x\right)=\left(x^{2n}-x^{2n-1}+...+x^2-x+1\right)-\left(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\right)\)
\(=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+x^{2n-1}-...-x^2+x-1=x^{2n+1}\)
\(\Rightarrow f\left(\dfrac{1}{10}\right)-g\left(\dfrac{1}{10}\right)=\left(\dfrac{1}{10}\right)^{2n+1}\)
Vậy \(f\left(\dfrac{1}{10}\right)-g\left(\dfrac{1}{10}\right)=\left(\dfrac{1}{10}\right)^{2n+1}\)
\(f\left(x\right)-g\left(x\right)\)
\(=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+x^{2n-1}-...-x^2+x-1\)
\(=x^{2n+1}\)
\(=\left(\dfrac{1}{10}\right)^{2n+1}=\dfrac{1}{10^{2n+1}}\)
Câu hỏi của Công Chúa Của Những Vì Sao - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé! Hai bài làm tương tự nhau:)
Giải:
a) Để biểu thức nguyên thì:
\(F\left(x\right)\in Z\)
\(\Leftrightarrow\dfrac{5x-2}{x-1}\in Z\)
\(\Leftrightarrow5x-2⋮x-1\)
\(\Leftrightarrow5x-5+3⋮x-1\)
\(\Leftrightarrow5\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x=\left\{0;2;-2;4\right\}\)
Vậy ...
b) Để biểu thức nguyên thì:
\(G\left(x\right)\in Z\)
\(\Leftrightarrow\dfrac{2x-7}{x+3}\in Z\) \(\Leftrightarrow2x-7⋮x+3\) \(\Leftrightarrow2x+6-13⋮x+3\) \(\Leftrightarrow2\left(x+3\right)-13⋮x+3\) \(\Leftrightarrow-13⋮x+3\) \(\Leftrightarrow x+3\inƯ\left(-13\right)=\left\{\pm1;\pm13\right\}\) \(\Leftrightarrow x=\left\{-2;-4;-16;10\right\}\) c) Để biểu thức nguyên thì:\(B\left(n\right)\in Z\)
\(\Leftrightarrow\dfrac{6n+5}{2n-1}\in Z\) \(\Leftrightarrow6n+5⋮2n-1\) \(\Leftrightarrow6n-3+8⋮2n-1\) \(\Leftrightarrow3\left(2n-1\right)+8⋮2n-1\) \(\Leftrightarrow8⋮2n-1\) \(\Leftrightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\) \(\Leftrightarrow n\in\left\{0;1;-\dfrac{1}{2};\dfrac{3}{2};-\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2};-\dfrac{7}{2}\right\}\) \(\Leftrightarrow n=\left\{0;1\right\}\) Vậy ...a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)
\(5x+1=\pm\dfrac{6}{9}\)
+) \(5x+1=\dfrac{6}{9}\)
\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{9}\)
\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)
+) \(5x+1=\dfrac{-6}{9}\)
\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{3}\)
\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)
vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)
a,
- Theo đề bài ta có:
(8x-1)2n-1 = 52n-1
=> 8x-1 = 5
8x = 6
x = \(\dfrac{6}{8}\)= \(\dfrac{3}{4}\)
- Vậy x = \(\dfrac{3}{4}\)
b,
- Ta có:
(x - 7)x+1 - (x - 7)x+11 = 0
(x - 7)x . (x - 7) - (x - 7)x . (x - 7)11 = 0
(x - 7)x . [(x - 7) - (x - 7)11] = 0
=> (x - 7)x = 0 hoặc [(x - 7) - (x - 7)11] = 0
- TH1: (x - 7)x = 0
=> x - 7 = 0
=> x = 7
- TH2:
[(x - 7) - (x - 7)11] = 0
=> x - 7 = (x -7)11
=> x - 7 = 1 hoặc x - 7 = 0
+ Nếu x - 7 = 1
x = 8
+ Nếu x - 7 = 0 (TH1)
- Vậy x = 7 hoặc x = 8
c, - Theo đề bài ta có:
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
- Thấy \(\left(\dfrac{2}{3}\right)^6=\left(\dfrac{2}{3}\right)^{2\cdot3}\)= \(\left(\dfrac{4}{9}\right)^3\)
=> \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)
=> \(x-\dfrac{2}{9}=\dfrac{4}{9}\)
=> \(x=\dfrac{4}{9}-\dfrac{2}{9}\)
\(x=\dfrac{2}{9}\)
- Vậy \(x=\dfrac{2}{9}\)
\(f\left(x\right)-g\left(x\right)\)
\(=\left(x^{2n}-x^{2n-1}+...+x^2-x+1\right)-\left(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\right)\)
\(=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+x^{2n-1}-...-x^2+x-1\)
\(=x^{2n+1}+\left(x^{2n}-x^{2n}\right)+\left(-x^{2n-1}+x^{2n-1}\right)+...+\left(x^2-x^2\right)+...+\left(-x+x\right)+\left(1-1\right)\)
\(=x^{2n+1}+0+0+...+0+0+0\)
\(=x^{2n+1}\)
( Thay \(x=\dfrac{1}{10}\) vào đa thức trên)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(\dfrac{1}{10}\right)^{2n+1}\)
Vậy \(f\left(x\right)-g\left(x\right)=\left(\dfrac{1}{10}\right)^{2n+1}\)
Ta có:f(x)-g(x)=(x2n-x2n-1+.........+x2-x+1)-(x2n+1+x2n-x2n-1+..........+x2-x+1)
=x2n-x2n-1+..........+x2-x+1+x2n+1-x2n+x2n-1-.......-x2+x-1
=(x2n-x2n)+(-x2n-1+x2n-1)+.......+(x2-x2)+(-x+x)+(1-1)+x2n+1
=0+x2n+1
=x2n+1
Thay x=\(\dfrac{1}{10}\)vào ta có:
(\(\dfrac{1}{10}\))2n+1=(\(\dfrac{1}{10}\))2n.\(\dfrac{1}{10}\)=\(\dfrac{1}{10^{2n}}\).\(\dfrac{1}{10}\)=\(\dfrac{1}{10^{2n+1}}\)
Vậy giá trị của hiệu f(x)-g(x) tại x=\(\dfrac{1}{10}\) là \(\dfrac{1}{10^{2n+1}}\)