K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2020

\(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

Ta có \(f\left(x\right)+f\left(1-x\right)=1\) khi đó

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)

\(=1+1+...+1+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\frac{1}{2}+3.\left(\frac{1}{2}\right)^2}=1005+\frac{1}{2}=\frac{2011}{2}\)

24 tháng 10 2020

Ta có: \(F\left(x\right)=\frac{x^3}{1-3x+3x^2}\)

\(\Leftrightarrow F\left(1-x\right)=1-\frac{x^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)

\(=\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

Ta có: \(F\left(x\right)+F\left(1-x\right)\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

\(\Leftrightarrow F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)=1\)

...

\(F\left(\frac{1005}{2012}\right)+F\left(\frac{1007}{2012}\right)=1\)

Do đó: \(A=F\left(\frac{1}{2012}\right)+F\left(\frac{2}{2012}\right)+...+F\left(\frac{2010}{2012}\right)+F\left(\frac{2011}{2012}\right)\)

\(=\left[F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)\right]+\left[F\left(\frac{2}{2012}\right)+F\left(\frac{2010}{2012}\right)\right]+...+F\left(\frac{1006}{2012}\right)\)

\(=1+1+...+F\left(\frac{1}{2}\right)\)

\(=1005+\left[\left(\frac{1}{2}\right)^3:\left(1-3\cdot\frac{1}{2}+3\cdot\frac{1}{4}\right)\right]\)

\(=1005+\left[\frac{1}{8}:\left(1-\frac{3}{2}+\frac{3}{4}\right)\right]\)

\(=1005+\left(\frac{1}{8}:\frac{1}{4}\right)\)

\(=1005+\frac{1}{2}=\frac{2011}{2}\)

15 tháng 10 2016

Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)

Áp dụng ta có : 

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)

\(=1+1+...+1\)(Có tất cả 1006 số 1)

\(=1006\)

16 tháng 10 2016

sai rồi bạn ơi

23 tháng 1 2020

Ta thấy: \(f\left(x\right)=\frac{x^3}{1-3x+x^2}\)

\(f\left(1-x\right)=\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+\left(1-x\right)^2}\)\(=\frac{\left(1-x\right)^3}{x^2-3x+1}\)

\(f\left(x\right)+f\left(1-x\right)=\frac{x^3+\left(1-x\right)^3}{x^2-3x+1}\)=1

Do đó: \(f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)=1\)

\(f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)=1\)

....

\(f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)=1\)

=>A=1+1+1+...+1+\(f\left(\frac{1006}{2012}\right)\)=\(\frac{2009}{2}\)

(1005 số 1)

23 tháng 1 2020

bn ơi cho mình hỏi dòng thứ 2 á tại sao \(\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+\left(1-x\right)^2}=\frac{\left(1-x\right)^3}{x^2-3x+1}\)

13 tháng 9 2018

Đễ dàng chưng minh được

\(f\left(1-x\right)=1-f\left(x\right)\)

\(\Rightarrow f\left(1-x\right)+f\left(x\right)=1\)

\(\Rightarrow A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)

\(=1005+f\left(\frac{1006}{2012}\right)\)

Làm nôt

NV
12 tháng 12 2020

Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)

7 tháng 5 2018

Ta có : 

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=2012\)

\(\Leftrightarrow\)\(\frac{x-1-2012}{2012}+\frac{x-2-2011}{2011}+\frac{x-3-2010}{2010}+...+\frac{x-2012-1}{1}=0\)

\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)

Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\ne0\)

Nên \(x-2013=0\)

\(\Leftrightarrow\)\(x=2013\)

Vậy \(x=2013\)

Chúc bạn học tốt ~ 

7 tháng 5 2018

\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1+2012=2012\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)

\(\Leftrightarrow x=2013\)

15 tháng 7 2019

\(F=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2012}+\sqrt{2011}}\)

\(F=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{\sqrt{2012}-\sqrt{2011}}{\left(\sqrt{2012}+\sqrt{2011}\right)\left(\sqrt{2012}-\sqrt{2011}\right)}\)

\(F=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2012}-\sqrt{2011}}{2012-2011}\)

\(F=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2012}-\sqrt{2011}\)

\(F=\sqrt{2012}-\sqrt{1}\)

\(F=\sqrt{2012}-1\)

26 tháng 11 2019

Áp dụng BĐT Cô - si ngược dấu :

\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4\left(x-2010\right)}\le\frac{4+\left(x-2010\right)}{4}\)

\(\Rightarrow\sqrt{x-2010}-1\le\frac{4+\left(x-2010\right)}{4}-1=\frac{x-2010}{4}\)

\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}\le\frac{1}{4}\)

Hoàn toàn tương tự với những phân thức còn lại 

\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2010=4\\x-2011=4\\z-2012=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\\z=2016\end{cases}}}\)