Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có lẽ bạn nên sửa đề thành \(f\left(x\right)=...x^2+1...\)hoặc là \(g\left(x\right)=...\left(bx-1\right)...\)
Ta có:
\(f\left(x\right)=ax^3+4x^3-4x+8=\left(a+4\right)x^3-4x+8\)
\(g\left(x\right)=x^3+4x\left(bx-1\right)+c-3=x^3+4bx^2-4x+c-3\)
Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow\hept{\begin{cases}a+4=1\\4b=0\\c-3=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}}\)
Kết luận
Để f(x)=g(x) thì ax3+4x(x2-1)+8=x3-4x(bx+1)+c-3
ax3+4x3-4x+8=x3-4bx2-4x+c-3
ax3+4bx2-c=x3-4x3-4x+4x-3-8
ax3+4bx2-c=-3x3-11
=> x=-3;b=0;c=11
Ta có : f(x) = ax3 + 4x(x2-x) - 4x + 8
= ax3 + 4x3 - 4x2 - 4x + 11 - 3
= x3 (a + 4) - 4x(x + 1) + 11-3
f(x) = g (x) \(\Leftrightarrow\) x3 (a + 4) - 4x(x + 1) +11-3 = x3 - 4x(bx + 1) + c-3
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a+4=1\\x+1=bx+1\\c=11\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=-3\\b=1\\c=11\end{matrix}\right.\)
vậy a = -3 , b = 1 và c = 11
f(x)=g(x)
<=>(a+4)x3-4x2-4x+8=x3-4bx2-4x+c-3
Đồng nhất thức ta được
a+4=1 a=-3
-4=-4b <=> b=1
8=c-3 c=11
f(x)=g(x)
<=>(a+4)x3-4x2-4x+8=x3-4bx2-4x+c-3
Đồng nhất thức ta được
a+4=1 a=-3
-4=-4b <=> b=1
8=c-3 c=11