Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xét 2 trường hợp.
Nếu x+y+z=0 thì suy ra x+y=-z;y+z=-x;z+x=-y
Nếu x+y+z khác 0 thì áp dụng tính chất dãy tỉ số bằng nhau
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)
\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)
\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)
cậu thử biến đổi mẫu của phấn số cho thành mẩu của từng phân số cần cm (3 lần áp dụng tính chất dãy tỉ số bằng nhau nhé)
\(\frac{x}{4}=\frac{y}{8}=\frac{x}{4}=\frac{2y}{16}=\frac{x+2y}{4+16}=\frac{x+2y}{20}\Rightarrow x+2y=\frac{20y}{8}\)
\(\frac{y}{8}=\frac{z}{5}=\frac{y+z}{8+5}=\frac{y+z}{13}\Rightarrow y+z=\frac{13y}{8}\)
\(\Rightarrow M=\frac{x+2y}{y+z}=\frac{20y}{8}.\frac{8}{13y}=\frac{20}{13}\)
N và P tính tương tự
Ta có: \(\frac{x+y-2z}{9}=\frac{y+z-2x}{16}=\frac{z+x-2y}{25}=\frac{x+y-2z+y+z-2x+z+x-2y}{9+16+25}=0\).
Suy ra \(x-2y+z=0\).
\(B=x-2y+z+2021=2021\).