Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2)
<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)
Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)
Mà a^2+b^2+c^2 = 14
<=> 2.(ab+bc+ca) = -14
<=> ab+bc+ca = -7
<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49
Lại có : a+b+c = 0
<=> a^2b^2+b^2c^2+c^2a^2 = 49
<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98
Tk mk nha
b) \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(D=0\)
Bài 2 :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
Mà \(2018=a+b+c\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)
Mà \(a+b+c=2018\)
\(\Leftrightarrow-b+b+c=2018\)
\(\Leftrightarrow c=2018\)
Khi đó \(M=\frac{1}{2018^{2017}}\)
Các trường hợp còn lại tương tự
Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)
Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo bài 2 ở link này nhé!
Lạ nhỉ mình trả lời rồi mà
ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử
\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)
Chia hai vế cho (x+y+z khác 0) chú ý => dpcm
quái lại câu 1 đâu
(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không
chia hai vế cho abc/2
2/bc+2/ac+2/ab=2 (*)
đăt: 1/a=x; 1/b=y; 1/c=z
ta có
x+y+z=k (**)
x^2+y^2+z^2=k(***)
lấy (*)+(***),<=>(x+y+z)^2=2+k
=> k^2=2+k
=> k^2-k=2
k^2-k+1/4=1/4+2=9/4
\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)
Mình chưa test lại đâu bạn tự test nhé
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)
\(\Leftrightarrow\)\(\frac{bcx+acy+abz}{abc}=0\)
\(\Leftrightarrow\)\(bcx+acy+abz=0\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
\(\Leftrightarrow\)\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=4\)
\(\Leftrightarrow\)\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=4\)
\(\Leftrightarrow\)\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4-2\frac{abz+acy+bcx}{xyz}=4\) (vì abz + acy + bcx = 0 )
câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
Đặt : x/a = m ; y/b = n ; z/c = p
=> m+n+p = 1 ; 1/m+1/n+1/p=0
1/m+1/n+1/p=0
<=> mn+np+pm/mnp=0
<=> mn+np+pm=0
<=> 2mn+2np+2pm=0
Xét : 1 = (m+n+p)^2 = m^2+n^2+p^2+2mn+2np+2pm = m^2+n^2+p^2
=> x^2/a^2+y^2/b^2+z^2/c^2 = 1
=> ĐPCM
Tk mk nha
\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\) C/M thế này cho ít số dễ nhìn
Quy đồng ta được
\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right)\)
\(a^2yx+a^2y^2+b^2x^2+b^2xy=a^2xy+2abxy+b^2xy\)
rút gọn
\(a^2y^2+b^2x^2=2abxy\)
\(a^2y^2+b^2x^2-2abxy=0\) hằng đẳng thức số 2
\(\left(ay+bx\right)^2=0\)
\(ay+bx=0\Leftrightarrow ax=-bx\)
vậy \(-bx+bx=0\) đúng
\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)\(\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\)(1)
\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)k}=\frac{a+b+c}{k}\)(2)
Từ (1); (2) => \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow\frac{abz+bcx+cay}{abc}=0\)
\(\Rightarrow abz+bcx+cay=0\)
\(\Rightarrow\frac{abz+bcx+cay}{xyz}=0\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=4\)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ca}{zx}\right)=4\)
\(\Rightarrow M+2\left(\frac{abz+bcx+cay}{xyz}\right)=4\)
\(\Rightarrow M+2.0=4\Rightarrow M=4\)
Chúc bạn học tốt ! Lê Tài Bảo Châu