Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{k}{x}=\frac{a}{c}\Rightarrow ax=ck\)
\(\frac{k}{y}=\frac{b}{d}\Rightarrow by=dk\)
Suy ra: ax+by=ck+dk=k.(c+d)
Mà c+d =k nên: ax+by=k.k=k2
ta có :
\(\frac{k}{x}=\frac{a}{c}=ax=kc\) ; \(\frac{k}{y}=\frac{b}{d}=>kd=by\) (1)
c + d = k (2)
từ 1 và 2 , ta có
ax+ by = kc+ kd = k(c+d) = kk= \(k^2\)
vậy ax+by = \(k^2\) (đpcm)
Bài rất dễ nha bạn!
\(\frac{k}{x}\) = \(\frac{a}{c}\) => kc = ax (nhân chéo)
\(\frac{k}{y}\) = \(\frac{b}{d}\)=> kd = by (nhân chéo)
=> ax+by = kc+kd(cộng từng vế phương trình)
<=> ax+by = k(c+d) [đặt nhân tử chung]
<=> ax+by = k(k) = k2 (vì c+d =k)
!!!! chúc bạn học tốt-Thợ săn toán học
Có: \(\frac{k}{x}=\frac{a}{c}\Rightarrow ax=kc\)
\(\frac{k}{y}=\frac{b}{d}\Rightarrow by=kd\)
=> \(ax+by=kc+kd=k\left(c+d\right)=k\cdot k=k^2\)
=>đpcm
Ta có: \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)
=> a2 = x.k; b2 = y.k
=> \(\frac{a^2}{b^2}=\frac{x.k}{y.k}=\frac{x}{y}\left(đpcm\right)\)
a/k = x/a => a2 = kx (1)
b/k = y/b => b2 = ky (2)
chia (1) cho (2) có;
a2/b2 =x/y
Cho : 2k2 = 2bc ( k ≠≠ b ; k ≠≠ c )
CMR : k+bc−b=c+kc−kk+bc−b=c+kc−k
Có: \(\left\{{}\begin{matrix}\frac{a}{k}=\frac{x}{a}\\\frac{b}{k}=\frac{y}{b}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=kx\\b^2=ky\end{matrix}\right.\\ \Rightarrow\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)
Ta có:
\(\left\{{}\begin{matrix}\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=kx\\\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=ky\end{matrix}\right.\)
Chia theo vế ta được:
\(a^2:b^2=kx:ky\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{kx}{ky}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{k}{x}=\frac{a}{c}\Rightarrow kc=ax;\frac{k}{y}=\frac{b}{d}\Rightarrow kd=by\)
ax+by=kc+kd=k(c+d)=k.k=k2
=>đpcm