Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2k2=2bc => k2=bc
=> b=c=k
Lại có: (k+k).(k-k)=(c+c).(c-c)
=> (k+b).(c-k)=(c+k).(c-b) ( Vì c=b=k nên ta thay vào nhé bạn)
=> \(\frac{k+b}{c-b}=\frac{c+k}{c-k}\)
Ta có:\(\frac{a}{a'}+\frac{b'}{b}=1\)
\(\Rightarrow ab+a'b'=a'b\)
\(\Rightarrow abc+a'b'c=a'bc\left(1\right)\)
Lại có:\(\frac{b}{b'}+\frac{c'}{c}=1\)
\(\Rightarrow bc+b'c'=b'c\)
\(\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)
Cộng vế theo vế của (1) và (2) ta được:
\(abc+a'b'c'=0\)
\(\frac{k}{x}=\frac{a}{c}\Rightarrow ax=ck\)
\(\frac{k}{y}=\frac{b}{d}\Rightarrow by=dk\)
Suy ra: ax+by=ck+dk=k.(c+d)
Mà c+d =k nên: ax+by=k.k=k2
Có: \(\frac{k}{x}=\frac{a}{c}\Rightarrow ax=kc\)
\(\frac{k}{y}=\frac{b}{d}\Rightarrow by=kd\)
=> \(ax+by=kc+kd=k\left(c+d\right)=k\cdot k=k^2\)
=>đpcm
Bài rất dễ nha bạn!
\(\frac{k}{x}\) = \(\frac{a}{c}\) => kc = ax (nhân chéo)
\(\frac{k}{y}\) = \(\frac{b}{d}\)=> kd = by (nhân chéo)
=> ax+by = kc+kd(cộng từng vế phương trình)
<=> ax+by = k(c+d) [đặt nhân tử chung]
<=> ax+by = k(k) = k2 (vì c+d =k)
!!!! chúc bạn học tốt-Thợ săn toán học
\(\frac{k}{x}=\frac{a}{c}\Rightarrow kc=ax;\frac{k}{y}=\frac{b}{d}\Rightarrow kd=by\)
ax+by=kc+kd=k(c+d)=k.k=k2
=>đpcm
Sai đề
Cho : 2k2 = 2bc ( k ≠≠ b ; k ≠≠ c )
CMR : k+bc−b=c+kc−kk+bc−b=c+kc−k