\(\frac{a}{c}=\frac{c}{b}\). Chứng minh rằng: \(\frac{b^2-a^2}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

Theo đề ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)

\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-a^2}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\left(đpmc\right)\)

27 tháng 1 2020

cảm ơn nha

18 tháng 12 2017

a) \(\frac{a}{c}=\frac{c}{b}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

b) \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow ab=c^2\)

\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-ab+ab-a^2}{a^2+ab}=\frac{\left(b-a\right)b+\left(b-a\right)a}{a.\left(a+b\right)}=\frac{\left(b-a\right)\left(b+a\right)}{a.\left(a+b\right)}=\frac{b-a}{a}\)

22 tháng 2 2019

cho mk hỏi viết phan số bằng cách nào vậy

12 tháng 12 2016

CÓ : \(\frac{a}{c}=\frac{c}{b}\)=>\(ab=c^2\)

THẾ VÀO =>\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a^2+ab}{b^2+ab}\)=\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)=\(\frac{a}{b}\)

6 tháng 1 2017

Câu 1:

Ta có\(\frac{a}{c}=\frac{c}{b}=>ab=c^2\) 

=>\(\frac{a^2+c^2}{c^2+b^2}=\frac{a^2+ab}{ab+b^2}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đccm\right)\)  

Câu 2:

Theo bài ra, ta có:\(\frac{a}{c}=\frac{c}{b}\)

=>\(ab=c^2\)

Ta có: \(\frac{b-a}{a}=\frac{\left(b-a\right).\left(a+b\right)}{a.\left(a+b\right)}=\frac{b.\left(a+b\right)-a.\left(a+b\right)}{a^2+ab}\)

\(\frac{ab+b^2-\left(a^2+ab\right)}{a^2+c^2}=\frac{ab+b^2-a^2-ab}{a^2+c^2}=\frac{b^2-a^2}{a^2+c^2}\)

=>\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\left(đpcm\right)\)

MIK CHẮC CHẮN BÀI NÀY LÀ HOÀN TOÀN CHÍNH XÁC LUN!!!!!!!!

k ĐÚNG cho mik nha, rùi mai mốt có j thì giúp đỡ nhau nhiều. 

1 tháng 1 2018

ta có \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\)

nên \(\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\left(ĐPCM\right)\)

23 tháng 11 2019

a) \(\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)

áp dụng t/c dãy tỉ số = nhau : 

\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)

mấy bài kia cũng tương tự em ạ !

gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)

                                               => a=bk; c=dk

rồi thay vào các biểu thức

23 tháng 6 2016

Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\begin{cases}a=ck\\c=bk\Rightarrow b=\frac{c}{k}\end{cases}\)

\(VT=\frac{c^2k^2+c^2}{\frac{c^2}{k^2}+c^2}=k^2\)

\(VP=\frac{a}{b}=\frac{ck}{\frac{c}{k}}=k^2\)

=> VT=VP (dpcm)

23 tháng 6 2016

theo đề bài ta có: 

\(\frac{a}{c}=\frac{c}{b}\) => a.b=c2

khi đó :

 \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

vậy khi \(\frac{a}{c}=\frac{c}{b}\) thì \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)

7 tháng 11 2016

+ Ta có \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\) Thay vào biểu thức \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)

7 tháng 11 2016

Ta lấy a mũ 2 + c mũ 2 trên b mũ 2 + c mũ 2         ->    có 2 c mũ 2 ta bỏ-> nếu a mũ 2 , b mũ 2 là 1 thì ko phái là a/b ak