\(\frac{a}{b}=\frac{c}{d}\). c/m:

a) \(\frac{a}{b}=\frac{a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

Ta có ; \(\frac{a}{b}=\frac{c}{d}\) 

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\left(1\right)\)

Mặt khác ; \(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\left(2\right)\)

Từ : (1) và (2) => \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

Suy ra ; \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)

Vậy còn câu a thì sao?

Ta có:

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) \(\frac{5a+3b}{5c+3d}=\frac{5.bk+3b}{5.dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\)

\(\frac{5a-3b}{5c-3d}=\frac{5.bk-3b}{5.dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\)

\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\left(đpcm\right)\)

b) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

20 tháng 3 2020

Thank you so much!!! <3

8 tháng 11 2017

      Đặt \(\frac{a}{b}=\frac{c}{d}\)= k

\(\Rightarrow\)a=bk , c = dk

Ta có:

  • \(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\) (1)

  \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)

Từ (1) và (2) suy ra \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

vậy \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

8 tháng 11 2017

nhớ giải chi tiết giúp mình nhé ai nhanh và đúng nhất mình sẽ tích cho

30 tháng 9 2017

Bài 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy .....

Bài 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Vậy .....

Chúc bạn học tốt!

5 tháng 11 2016

Từ \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

<=> (5a+3b)(5c-3d) = (5c+3d)(5a-3b)

<=> 25ac - 15ad + 15bc - 9bd = 25ca - 15cb + 15da - 9db

<=> -15ad + 15bc = -15cb + 15da

<=> ad = bc

<=> \(\frac{a}{b}=\frac{c}{d}\)

2 tháng 11 2017

b) Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=kb\\\frac{c}{d}=k\Rightarrow c=kd\end{cases}}\)

VT : \(\frac{5a+3b}{5a-3b}\Rightarrow\frac{5kb+3b}{5ka-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (1)

VP : \(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (2)

Từ (1) và (2) => đpcm

4 tháng 8 2016

Bài này bạn chỉ cần đặt k rồi thế k vào là làm được à, dễ lắm