K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

21 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\Leftrightarrow\frac{bkb}{dkd}=\left(\frac{bk-b}{dk-d}\right)^2\)

Xét VT \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(1\right)\)

Xét VP \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) -->Đpcm

21 tháng 8 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:
\(a=b.k\)

\(c=d.k\)

Theo bài ra ta có:
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\)   (1)

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left[\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\)   (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

\(\Rightarrowđpcm\)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

24 tháng 8 2016

\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

                                       =>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)

                                      =>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)

=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)

24 tháng 8 2016

chứng minh này chị ngu lắm em