Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\)\(\frac{a+b+c}{b+c+d}.\)\(\frac{a+b+c}{b+c+d}.\)\(\frac{a+b+c}{b+c+d}.\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Bài 1: D
Bài 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)
\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)
b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)
\(B=1-\frac{1}{2015}\)
\(B=\frac{2014}{2015}\)
a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
còn lại tự giải nha gần giống như phần b thôi cũng thú vị.
ủng hộ nha
Áp đụng tính chất dãy tỷ số bằng nhau ta được
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Ta lại có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Ta có:
+) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)
+) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(2)
Từ (1)(2)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)
\(C=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.........\frac{2499}{2500}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}......\frac{49.51}{50^2}\)
\(=\frac{2.3.4....49}{3.4.5....50}.\frac{4.5.6....51}{3.4.5....50}\)
\(=\frac{1}{25}.17=\frac{17}{25}\)
\(a)\) \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{1000}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)
\(A=\frac{1.2.3.....999}{2.3.4.....1000}\)
\(A=\frac{1}{1000}.\frac{2.3.4.....999}{2.3.4.....999}\)
\(A=\frac{1}{1000}\)
Vậy \(A=\frac{1}{1000}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=>đpcm
đăng lại làm gì