Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\left(\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\right).\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{a}{\left(c-a\right)\left(b-c\right)}+\frac{b}{\left(c-a\right)\left(a-b\right)}+\frac{b}{\left(c-a\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a\left(c-a\right)+a.\left(a-b\right)+b.\left(a-b\right)+b.\left(b-c\right)+c.\left(b-c\right)+c.\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{ac-a^2+ab-ac+ba-b^2+b^2-bc+bc-c^2+c^2-ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+0=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
đpcm
Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)
\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)
\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0
Từ đó suy ra điều phải chứng minh
Với điều kiện như đề bài
Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)
Tướng tự:
\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)
\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)
Em nhớ làm tiếp nhé!
Từ đề bài ta có: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=\frac{ab-b^2-ac+c^2}{\left(a-c\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{ab-ac-b^2+c^2}{\left(a-c\right)\left(a-b\right)\left(b-c\right)}\)
Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{cb-ab-c^2+a^2}{\left(a-c\right)\left(a-b\right)\left(b-c\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{ca-cb-a^2+b^2}{\left(a-c\right)\left(a-b\right)\left(b-c\right)}\)
Cộng các vế các hằng đẳng thức trên ta suy ra đpcm
(Không chắc sai thì thôi :D )
\(VT=\frac{c-b}{\left(a-b\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)}+\frac{b-a}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-\left(b-c\right)^2-\left(c-a\right)^2-\left(a-b\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-2a^2-2b^2-2c^2+2ab+2ac+2bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{2ab-2ac+2bc-2b^2+2ab+2ac-2bc-2a^2-2ab+2ac+2bc-2c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{2\left(a-b\right)\left(b-c\right)+2\left(a-b\right)\left(c-a\right)+2\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{2}{c-a}+\frac{2}{b-c}+\frac{2}{a-b}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Rightarrow a^2b+ab^2+abc+abc+b^2c+bc^2+a^2c+abc+ac^2=abc\)
\(\Rightarrow a^2b+2abc+bc^2+ab^2+b^2c+a^2c+ac^2=0\)
\(\Rightarrow b\left(a^2+2ac+c^2\right)+\left(ab^2+b^2c\right)+\left(a^2c+ac^2\right)=0\)
\(\Rightarrow b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=0\)
\(\Rightarrow\left(a+c\right)\left(ab+bc+b^2+ac\right)=0\)
\(\Rightarrow\left(a+c\right)\left[\left(ab+b^2\right)+\left(bc+ac\right)\right]=0\)
\(\Rightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)\(\left[đpcm\left(a\right)\right]\)
\(\Rightarrow\)* \(a+b=0\Rightarrow a=-b\)
* \(b+c=0\Rightarrow b=-c\)
* \(a+c=0\Rightarrow a=-c\)
Trường hợp 1 : Nếu \(a=-b\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{-b^3}+\frac{1}{b^3}+\frac{1}{c^3}\)\(=\frac{1}{b^3}-\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
Mà : \(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)\(\left[đpcm\left(b\right)\right]\)
Hai trường hợp còn lại xét tương tự nhé
a) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
thiếu dữ kiện a,b,c khác 0 nha