Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
Từ \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\Rightarrow\frac{1}{a}=\frac{1}{c}\)
Tương tự suy ra \(\frac{1}{c}=\frac{1}{b};\frac{1}{b}=\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Ta có \(ab^2+bc^2+ca^2=a^3+b^3+c^3\)(đccm)
\(\text{Một cách khác}\)
\(\text{Ta có:}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
\(\Leftrightarrow ab\left(b+c\right)=bc\left(a+b\right)\)
\(\Leftrightarrow ab^2+abc=abc+b^2c\)
\(\Leftrightarrow a=c\left(1\right)\)
\(\frac{bc}{b+c}=\frac{ca}{a+c}\)
\(\Rightarrow bc\left(a+c\right)=ca\left(b+c\right)\)
\(\Rightarrow abc+bc^2=abc+c^2a\)
\(\Rightarrow b=a\left(2\right)\)
\(Từ\)\(\text{(1) và (2)}\)\(\Rightarrow a=b=c\)
\(\text{Ta có :}\)\(ab^2+bc^2+ca^2=a^3+b^3+c^3\)
1/ a = 2100 = (24)25 = 1625
b = 375 = (33)25 = 2725
c = 550 = (52)25 = 2525
Do: 16 < 25 < 27 => 1625 < 2525 < 2725 => 2100 < 550 < 375 => a < c < b
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Rightarrow a=b=c\Rightarrow M=1\)