Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số = nhau :
\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)
mấy bài kia cũng tương tự em ạ !
gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)
=> a=bk; c=dk
rồi thay vào các biểu thức
ta có \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\)
nên \(\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\left(ĐPCM\right)\)
Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\begin{cases}a=ck\\c=bk\Rightarrow b=\frac{c}{k}\end{cases}\)
\(VT=\frac{c^2k^2+c^2}{\frac{c^2}{k^2}+c^2}=k^2\)
\(VP=\frac{a}{b}=\frac{ck}{\frac{c}{k}}=k^2\)
=> VT=VP (dpcm)
theo đề bài ta có:
\(\frac{a}{c}=\frac{c}{b}\) => a.b=c2
khi đó :
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
vậy khi \(\frac{a}{c}=\frac{c}{b}\) thì \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Từ a/b = b/c
Suy ra : bb = ac
b2 = ac
vậy : a2 + b2 / b2+ c2 = a2 + ac / ac + c2 = a(a+c) / c(a+c) = a/c
Vậy : Ta có được cái cần chứng minh :))
Lớp mình vừa kiểm tra 15' bài này xong .
Ta có :\(\frac{a}{b}=\frac{b}{c}\)
=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
=> \(\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)
=> \(\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)
=> \(\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}\)
=> \(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(\text{đpcm}\right)\)
CÓ : \(\frac{a}{c}=\frac{c}{b}\)=>\(ab=c^2\)
THẾ VÀO =>\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a^2+ab}{b^2+ab}\)=\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)=\(\frac{a}{b}\)
Câu 1:
Ta có\(\frac{a}{c}=\frac{c}{b}=>ab=c^2\)
=>\(\frac{a^2+c^2}{c^2+b^2}=\frac{a^2+ab}{ab+b^2}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đccm\right)\)
Câu 2:
Theo bài ra, ta có:\(\frac{a}{c}=\frac{c}{b}\)
=>\(ab=c^2\)
Ta có: \(\frac{b-a}{a}=\frac{\left(b-a\right).\left(a+b\right)}{a.\left(a+b\right)}=\frac{b.\left(a+b\right)-a.\left(a+b\right)}{a^2+ab}\)
\(\frac{ab+b^2-\left(a^2+ab\right)}{a^2+c^2}=\frac{ab+b^2-a^2-ab}{a^2+c^2}=\frac{b^2-a^2}{a^2+c^2}\)
=>\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\left(đpcm\right)\)
MIK CHẮC CHẮN BÀI NÀY LÀ HOÀN TOÀN CHÍNH XÁC LUN!!!!!!!!
k ĐÚNG cho mik nha, rùi mai mốt có j thì giúp đỡ nhau nhiều.
Từ \(\frac{a+b}{a-b}=\frac{b+c}{b-c}\Rightarrow\left(a+b\right).\left(b-c\right)=\left(b+c\right).\left(a-b\right)\)
\(\Rightarrow ab-ac+b^2-bc=ab-b^2+ac-bc\)
\(\Rightarrow2b^2=2ac\Rightarrow b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
Từ \(\frac{a+c}{a-c}=\frac{b+d}{b-d}\Rightarrow\left(a+c\right).\left(b-d\right)=\left(b+d\right).\left(a-c\right)\)
\(\Rightarrow ab-ad+bc-cd=ab-bc+ad-cd\)
\(\Rightarrow2ad=2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{d^2}=\frac{a^2+b^2-c^2}{b^2+c^2-d^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
Suy ra điều cần chứng minh
Chúc em học tôt
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405