Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)
\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\) (đpcm)
Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)
\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\)
\(\Rightarrowđpcm\)
Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Leftrightarrow ca+cb=2ab\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)
\(\frac{1}{c}=\frac{b+a}{2ab}\)
suy ra \(2ab=c\left(b+a\right)\)
\(2ab=cb+ca\)
suy ra \(ab+ab=cb+ca\)
suy a \(ab-cb=ca-ab\)
suy ra \(b\left(a-c\right)=a\left(c-b\right)\)
suy ra \(\frac{a}{b}=\frac{a-c}{c-b}\left(Đpcm\right)\)
ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=\frac{1}{c}\times2=\frac{1}{a}+\frac{1}{b}\)
\(=\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
\(=\frac{2}{c}=\frac{b+a}{ab}\)
= \(c\left(b+a\right)=ab\times2\)
= cb +ca = ab+ab
= ab - cb = ac-ab
\(=b\left(a-c\right)=a\left(c-b\right)\)
= \(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)
\(\frac{1}{c}=\frac{a+b}{2ab}\)
\(2ab=c\left(a+b\right)\)
\(ab+ab=ac+bc\)
\(ab-bc=ac-ab\)
\(b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=c.\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
P/s: Bài toán này khá hay đó !!
Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)
Mà : \(a,b,c>0\)
\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)
+) Xét : \(a^2c+a^2b=b^2c+ab^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
+) Xét \(b^2c+ab^2=c^2b+c^2a\)
\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)
\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)
\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\Rightarrow\frac{1}{c}=\frac{2a+2b}{4ab}\Rightarrow4ab=2ac+2bc\)
\(\frac{a}{b}=\frac{a-c}{c-b}\Rightarrow ac-ab=ab-bc\Rightarrow2ab=ac+bc\Rightarrow4ab=2ac+2bc\) (chứng minh trên)
Vậy \(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\frac{a-c}{c-b}=\frac{a}{b}\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow2ab=c.\left(a+b\right)\)
\(\Rightarrow1.2ab=c.\left(a+b\right)\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}=\frac{a}{2ab}+\frac{b}{2ab}=\frac{1}{2b}+\frac{1}{2a}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\text{Vậy }\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)