Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
de f co gia tri nguyen thi n^2+1 phai chia het cho n^2-3
ta co
n^2+1=(n^2-3)+4
ma (n^2-3) chia het cho n^2-3
=>4 chia het cho n^2-3
=>n^2-3 thuoc uoc cua 4
=>n^2thuoc {+-1;+-2;+-4}
ta co bang ( ban tu lam nha)
vay ...
b) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
Các câu còn lại tương tự, mình để lại đáp án nhé:
c) \(n\in\left\{-2;-4\right\}\)
d) \(n\in\left\{-2;-1;3;5\right\}\)
e) \(n\in\left\{0;-2;2;-4\right\}\)
f) \(n\in\left\{0;2;-6;8\right\}\)
1.viết tập hợp các số nguyên x,biết:
18/6 <hoặc=x<hoặc=144/72
-30/5<x<-45/9
2.tìm số nguyễn lớn nhất sao cho
x<-13/3
x<hoặc = -49/7
chi tiết ra giúp mình nhé
cảm ơn nhìu
bai 3
\(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)
\(10A=1\frac{9}{10^{2005}+1}\)
\(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)
\(10B=1\frac{9}{10^{2006}+1}\)
Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
bai 4
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
Ta có \(A=\frac{2n^2+1}{n^2-1}=\frac{2\left(n^2-1\right)+3}{n^2-1}=2+\frac{3}{n^2-1}\)
Để \(A\in Z\)thì \(2+\frac{3}{n^2+1}\)là số nguyên
\(\Rightarrow\frac{3}{n^2+1}\in Z\)
\(\Rightarrow3⋮n^2+1\)
Hay \(n^2+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta lập bảng
n + 1 2 n 1 -3 3 -1 0 O 2 O
Vậy \(x\in\left\{0;\sqrt{2}\right\}\)