Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)
1.
a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)
c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)
d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)
e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)
Trả lời:
Bài 1:
a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)
b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)
c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)
d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)
e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)
Bài 2:
a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)
b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)
d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)
f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
a) \(\left(-\frac{1}{4}\right)^0=1\)
b) \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)
c) \(\left(\frac{4}{5}\right)^{-2}=\frac{25}{16}\)
d) \(\left(0,5\right)^{-3}=8\)
e) \(\left(-1\frac{1}{3}\right)^4=\left(-\frac{4}{3}\right)^4=\frac{256}{81}\)
a, \(\left(\frac{-1}{4}\right)^0\) = 1
Bất kỳ số nguyên nào nếu có mũ bằng 0 đều bằng 1
b, \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)
\(\Rightarrow1-\frac{1}{1+2+3+...+n}=1-1:\frac{n.\left(n+1\right)}{2}=1-\frac{2}{n.\left(n+1\right)}\)
\(=\frac{n.\left(n+1\right)-2}{n.\left(n+1\right)}=\frac{n^2+n-2}{n.\left(n+1\right)}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\) (*)
Từ (*)
\(\Rightarrow1-\frac{1}{1+2}=\frac{4.1}{2.3};1-\frac{1}{1+2+3}=\frac{5.2}{3.4};...;1-\frac{1}{1+2+3+...+n}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\)
\(\Rightarrow E=\frac{4.1}{2.3}.\frac{5.2}{3.4}...\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}=\frac{4.1.5.2...\left(n+1\right).\left(n-2\right).\left(n+2\right).\left(n-1\right)}{2.3.3.4....\left(n-1\right).n.n.\left(n+1\right)}\)\(=\frac{n+2}{n.n}\)
\(\Rightarrow\frac{E}{F}=E:F=\left(\frac{n+2}{n.n}\right):\frac{n+2}{n}=\frac{n+2}{n.n}.\frac{n}{n+2}=\frac{1}{n}\)
\(\Rightarrow\frac{E}{F}=\frac{1}{n}\)