K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

a, Kẻ OM ⊥ CD

Gọi K = OD ∩ d => ∆COK = ∆COD

=> OK = OD => OM = OA = R => CD là tiếp tuyến

b, AC+BD=CM+DM=CD ≥ AB

Do đó min (AC+BD)=AB

<=> CD//AB => ABCD là hình chữ nhật <=> AC = AO

c, AC.BD = MC.MD =   O M 2 =  4 a 2

=>  1 O C 2 + 1 O D 2 = 1 4 a 2

d, Từ tính chất hai giao tuyến => MN//BD => MNAB hay MHAB;

AC//BD; MN//BD; NH//BD

=>  M N B D = N H B D => MN = NH

5 tháng 6 2021

a.tứ giác AMDO nội tiếp (∠AOD+∠AMD=180)

⇒BD.BM=BO.BA

mà A,B,O cố định nên BO.BA không đổi

⇒BD.BM không có giá trị phụ thuộc  vào vị trí điểm m

b.có ∠EMB=\(\dfrac{1}{2}\stackrel\frown{MB}\) (góc tạo bởi tia tiếp tuyến và dây cung)

do tứ giác AMDO nội tiếp⇒∠MAO=∠MDE(1)

∠MAO=\(\dfrac{1}{2}\stackrel\frown{MB}\)

⇒∠EMB=∠MAO(2)

từ (1) và (2) ⇒∠EMB=∠MDE

⇒ΔEMD cân tại E

⇒ED=EM

a: góc ACO=1/2*sđ cung AO=90 độ

=>OC//BD

Xét ΔADB có

O là trung điểm của AB

OC//BD

=>C là trung điểm của AD

b: BC là tiếp tuyến của (O')

=>góc BCO'=90 độ

=>góc O'CA=góc OCB

=>góc CO'O=góc O'CO=góc O'OC

=>ΔOO'C đều

=>C thuộc (O') sao cho ΔOCO' đều

=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm

a: góc ACO=1/2*sđ cung AO=90 độ

=>OC//BD

Xét ΔADB có

O là trung điểm của AB

OC//BD

=>C là trung điểm của AD

b: BC là tiếp tuyến của (O')

=>góc BCO'=90 độ

=>góc O'CA=góc OCB

=>góc CO'O=góc O'CO=góc O'OC

=>ΔOO'C đều

=>C thuộc (O') sao cho ΔOCO' đều

=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm