K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2015

Bạn tự vẽ hình nhé! 

+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)

- Nối O với F. Kẻ OH | BF. 

Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2

Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)

=> góc ABF = góc BOF/2   (*)

- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2

Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc  FOC/ 2

=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2 

=> góc BDF = góc BOF/2 (**)

Từ (*)(**) => góc ABF = BDF mà góc FAB chung 

=>  Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2

+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung 

=> Tam giác AFI đồng dạng với tam giác AOD  (c - g- c)

=> góc AIF = ADO ( 2 góc tương ứng) 

 

26 tháng 5 2016

Để mình hướng dẫn vậy : 

a) Bạn tự chứng minh

b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm

c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

26 tháng 5 2016

Để mình hướng dẫn vậy : 
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

3 tháng 5 2015

Bài này là đề thi lớp 10 TPHCM năm rồi

12 tháng 4 2020

enytunyt