Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của phạm trung hiếu - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được
a. Xét tứ giác ABOC có: \(\left\{{}\begin{matrix}\widehat{BOC}=\widehat{OBA}=\widehat{OCA}=90^o\\BO=CO=R\end{matrix}\right.\) \(\Rightarrow\)Tứ giác ABOC là hình vuông
b. Gọi \(E=HN\cap OI\)
Ta có: \(\left\{{}\begin{matrix}\widehat{HEO}=\widehat{IEN}\left(đối.đỉnh\right)\\\widehat{IEN}=\widehat{HMN}\left(cùng.phụ.\widehat{HNM}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{HEO}=\widehat{HMN}\)
\(\Rightarrow\widehat{OHE}=\widehat{OIM}=90^o\)
Xét tứ giác OHNC có: \(\widehat{OCN}+\widehat{OHN}=90^o+90^o=180^o\)
\(\Rightarrow\)Tứ giác OHNC nội tiếp
1/
Xét (O) có
\(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow AM\perp BM\) => AM là tiếp tuyến với (B) bán kính BM
Ta có
\(AB\perp MN\Rightarrow MH=NH\) (trong đường tròn đường kính vuông góc với dây cung thì chia đôi dây cung tại điểm giao cắt)
=> AB vừa là đường cao vừa là đường trung tuyến của tg BMN
=> tg BMN cân tại B (Trong tg đường cao xp từ 1 đỉnh đồng thời là đường trung tuyến thì tg đó là tg cân tại đỉnh đó)
=> BM=BN (cạnh bên tg cân) => \(N\in\left(B\right)\) => BN là đường kính của (B)
Xét (O) có
\(\widehat{ANB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AN\perp BN\)
=> AN là tiếp tuyến của (B)
2/
Ta có
\(MN=MH+NH\)
\(\Rightarrow MN^2=MH^2+NH^2+2.MH.NH\) (1)
Xét tg vuông AMB có
\(MH^2=AH.HB\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)
\(\Rightarrow MH=\sqrt{AH.HB}\) (3)
Xét tg vuông ANB có
\(NH^2=AH.HB\) (lý do như trên) (4)
\(\Rightarrow NH=\sqrt{AH.HB}\) (5)
Từ (3) và (5) \(\Rightarrow MH.NH=\sqrt{AH.HB}.\sqrt{AH.HB}=AH.HB\) (6)
Thay (2) (4) (6) vào (1)
\(\Rightarrow MN^2=AH.HB+AH.HB+2.AH.HB=4.AH.HB\)
Kẻ OK vuông góc với MN
GọiH là giao của OK và AB
=>H là trung điểm của AB
=>HA=HB=12cm
Xét ΔOKN có BH//KN
nên BH/KN=OB/ON
=>KN=31,2cm
=>\(OK=\sqrt{33.8^2-31.2^2}=13\left(cm\right)=R\)
=>K thuộc (O;R)
=>MN là tiếp tuyến của (O)