K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

O A B C H D E K F

a) Do AB và AC là các tiếp tuyến cắt nhau tại A nên áp dụng tính chất hai tiếp tuyến cắt nhau ta có: AB = AC và AH là phân giác góc BAC.

Xét tam giác cân ABC có AH là phân giác nên AH đồng thời là đường cao. Vậy thì AO vuông góc với BC tại H.

b) Xét tam giác AEC và ACD có : 

\(\widehat{A}\) chung

\(\widehat{ACE}=\widehat{ACD}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)

\(\Rightarrow\Delta AEC\sim\Delta ACD\left(g-g\right)\)

\(\Rightarrow\frac{AE}{AC}=\frac{AC}{AD}\Rightarrow AE.AD=AC^2\)

Xét tam giác vuông ACD, đường cao CH, ta có :

\(AH.AO=AC^2\)  (Hệ thức lượng)

Vậy nên ta có : AE.AD = AH.AO

c) Xét tam giác vuông ABO, đường cao BH, ta có: AH.AO = BO2

Do BO = DO nên AH.AO = OD2

Lại có \(\Delta AKO\sim\Delta FHO\left(g-g\right)\Rightarrow\frac{AO}{FO}=\frac{OK}{OH}\Rightarrow OK.OF=AO.OH\)

Vậy nên OK.OF = OD2 hay \(\frac{OK}{OD}=\frac{OD}{OF}\)

Vậy nên \(\Delta OKD\sim\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{FDO}=\widehat{DKO}=90^o\)

Vậy nên FD là tiếp tuyến của đường tròn (O).

26 tháng 2 2018

1/ Do EF//AD nên \(EF\perp AB\)

Theo tính chất đường kính dây cung ta có AB đi qua trung điểm EF hay AB là trung trực EF.

Vậy thì AE = AF; BE = BF.

2/ Ta thấy hai tam giác vuông DAO và DCO có chung cạnh huyền DO nên DAOC là tứ giác nội tiếp đường tròn đường kính DO.

3/Xét tam giác DEC và DCB có :

Góc D chung

\(\widehat{DCE}=\widehat{DBC}\)   (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

\(\Rightarrow\Delta DEC\sim\Delta DCB\left(g-g\right)\)

\(\Rightarrow\frac{DE}{DC}=\frac{DC}{DB}\Rightarrow DC^2=DE.DB\)

4/ Vì \(\Delta DEC\sim\Delta DCB\Rightarrow\frac{EC}{BC}=\frac{DC}{DB}\Rightarrow EC=\frac{BC.DC}{DB}\)

\(\Rightarrow AC.EC=\frac{AC.BC.DC}{DB}=\frac{2S_{ABC}.DC}{DB}\)

Ta cần chứng minh AC.EC = AF.CH (*) hay \(\Rightarrow\frac{2S_{ABC}.DC}{CH}=AF.DB\Rightarrow\frac{2S_{ABC}.DC}{CH}=AE.DB\)

\(\Rightarrow AE.DB=AB.DC=AB.DA\)  (**)

(**) đúng vì \(AE.DB=AB.DA\left(=S_{DAB}\right)\)

Vậy (*) đúng hay AF.CH = AC.EC

5/ Ta cần chứng minh KA = KD để suy ra KE là tiếp tuyến. 
Kéo dài AE, cắt CH tại M .

Do DA // CH (Cùng vuông góc AB) nên \(\frac{AK}{CM}=\frac{KI}{IC}\) 
và \(\frac{KD}{CH}=\frac{KI}{IC}\Rightarrow\frac{AK}{MC}=\frac{KD}{CH}\)  (1)
Gọi P, J lần lượt là giao điểm của DP với CH và BC với AD.
\(\Rightarrow\frac{HP}{AD}=\frac{BP}{BD}=\frac{CP}{DJ}\)  (2)

Xét tam giác ACJ vuông tại C, AD = DC nên DC là đường trung tuyến. Suy ra AD = DJ. 
Từ (2) suy ra HP = PC.
Xét tam giác vuông AMH và PBH, ta có \(\widehat{AMH}=\widehat{HBP}\) (cạnh tương ứng vuông góc) 
\(\Rightarrow\Delta AMH\sim\Delta PBH\left(g-g\right)\)

\(\Rightarrow\frac{MH}{BH}=\frac{AH}{PH}\Rightarrow\frac{MH}{AH}=\frac{BH}{PH}\)
\(\Rightarrow MH=\frac{AH.HB}{PH}=\frac{AH.HB}{\frac{CH}{2}}=\frac{2AH.HB}{CH}\)   (3)
Do CH2 = AH.HB \(\Rightarrow\frac{2AH.HB}{CH}=2CH\)
Từ (3) \(\Rightarrow MH=2CH\Rightarrow CM=CH\) 
Từ (1) ta có AK = KD 
\(\Rightarrow\) KE là trung tuyến của tam giác vuông ADE \(\Rightarrow KA=KE\)
\(\Rightarrow\Delta OKA=\Delta OKE\left(c-c-c\right)\Rightarrow\widehat{KEO}=\widehat{KAO}=90^o\)
hay KE là tiếp tuyến của (O).

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếpb/ Chứng minh rằng góc ACB+ góc AEB= 45 độ2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A...
Đọc tiếp

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.

1
18 tháng 4 2016

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

20 tháng 8 2021

ui sợ thế sợ quá bạn ạ

17 tháng 2 2016

câu 1 sử dụng tính chất góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung là xong nhé

17 tháng 2 2016

kẻ IK vuông góc với DG và DG cắt đường tròn ngoại tiếp tam giác DFM tại P ==> P là điểm chính giữa cung DF

vì IG vuông góc với DC==> IG // BC

do đó giờ cần chứng minh góc DIG=DBC ( 2 góc đồng vị là ra D;I;B thẳng hàng)

ta có góc DIG=cung DP

 góc DMF=1/2cung DF

MÀ cung DP=1/2cung DF( VÌ P là ĐIỂM CHÍNH GIỮA CUNG DF)

==> DIG=DMF

 mà góc DMF=DMC( 2 góc nội tiếp cùng chắn 1 cung)

==> góc DIP=DBC

mà DBC+GIB=180 độ==> DIG+GIB=180 độ

 ==> D;I;B thẳng hàng

    

21 tháng 2 2016

a)fac=amo,emo=fca=90 =>efm=emf=>em=ef

b)*dci+dic+idc+ibc+icb+cib=360 mà dci+icb=90;idc+ibc=90 =>dic+cib=180 =>3 diem thang hang

dci+idc+dic=180;cib+icb+ibc=180

*abi=cung ad/2 mà c ko doi =>d ko doi=>ad ko doi=>abi ko doi